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Network science

Networks are used for modelling broad variety of complex

systems:

From macromolecules to WWW, social, economic, political

and ecological systems.

Networks can be modelled in terms of metric graphs.

Graph is characterized by its topology, a connection rule for

graph bonds.



What is quantum Network?

No standard definition of quantum network.

Depends on the topic where network appears

Our definition:

Any branched structure (network) where the

particles/waves/phenomena are described in terms of

quantum mechanical wave equations



Quantum Networks in Optics:

Microwave Networks

Wave transport in optical fibers is described by Helmholtz 

equation:
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O . Hul et al Phys. Rev. E 69 056205 (2004)



Quantum networks in condensed 

matter: Branched carbon nanotube

M. Terrones, F. Banhart, N. Grobert, J. C. Charlier, H. Terrones and P. M. 
Ajayan, Physical Review Letters 89, 75505, 2002.



Quantum networks in condensed 

matter: Majorana wire networks



Quantum networks in condensed 

matter: Branched graphene 

nanoribbon



Quantum networks in polymers:

Exciton dynamics 

in conducting polymers



Quantum networks in quantum 

information



Quantum networks in quantum 

information



Metric graphs

A graph with the bonds which can be assigned length,

𝒐 < 𝒍𝒃: < 𝑫

is called metric graph



The topology of the graph, that is, the way the vertices

and bonds are connected is given in terms of the VV

connectivity matrix Ci,j (sometimes referred to as the

adjacency matrix) which is defined as:

Graphs and their topology



Constructing quantum graphs 

from finite interval (wires)

Metric graph as a collection of interval glues to each other 

according to connectivity matrix



Constructing quantum graphs 

from finite interval (wires)

Metric graph as a collection of interval glues to each other 

according to connectivity matrix



𝑖
𝜕𝜓

𝜕𝑡
= 𝐻𝜓

where 𝐻 is the Shrödinger or Dirac operator

Evolution equation on graphs



Wave equation on graphs: Wave 

function

Wave function Ψ is a B-component vector



Wave equation on graphs: 

Vertex Boundary conditions



Differential operators on graphs

For given self-adjoint differential operator on graph 

D skew-Hermitian form can be constructed as  

( , ) , ,D D       

V.Kostrykin, R.Schrader, J. Phys. A. 32 595 (1999)



V.Kostrykin, R.Schrader, J. Phys. A: Math. Gen. 32 (1999) 595–630. 

Boundary conditions

0)0()0(   BA

where A and B are two n×n matrices 



The Schrödinger equation on 

graphs: Wave function

For each bond b = (i, j) a coordinate xi,j which indicates the position along

the bond is assigned. The variable xi,j takes the value 0 at the vertex i and

the value Li,j ≡ Lj,i at the vertex j while xj,i is zero at j and Li,j at i. We have

thus defined the length matrix Li,j with matrix elements different from zero,

whenever Ci,j ≠0 and Li,j = Lj,i for b = 1, ...,B.

The wavefunction Ψ is a B−component vector and can be written as

where the set  B

iib
1

consists of B different bonds

T. Kottos and U. Smilansky, Ann. Phys. 274, 76 (1999).



The Schrödinger equation on 

graphs: Boundary Conditions

The parameters λi are free parameters which determine the type of the 

boundary conditions.

The special case of zero λi’s, corresponds to Neumann boundary conditions. 

Dirichlet boundary conditions are introduced when all the λi = ∞.

The wave function must satisfy boundary conditions at the vertices, which ensure 

continuity (uniqueness) and current conservation. For every i = 1, … , V :
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 Current conservation

T. Kottos and U. Smilansky, Ann. Phys. 274, 76 (1999).



The Schrödinger equation on 

graphs: Solutions

At any bond b = (i, j) the component b can be written in terms of its values on 

the vertices i and j as

The current conservation condition leads to
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The Schrödinger equation on 

graphs: Eigenvalues

Spectral equation
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Quantum star graph
A graphs of the most simplest topology is so-called star-graph. It consist of

three or more bonds connected at the single vertex which can be called central

vertex. Other ones are called edge vertices. The eigenvalue problem for a star

graph with N bonds is given by the following Schrödinger equation:

We assign for each bond j a coordinate yj which indicates the position along the 

bond and takes the value 0 at the vertex V and the value lj at the edge vertex.

The boundary conditions for the star graph are

−𝑖
𝑑2

𝑑𝑥2
𝜙𝑗  𝑦 = 𝑘2𝜙𝑗  𝑦 , 𝑗 = 1, … , 𝑁. 

 
 
 

 
 
 𝜙1 𝑦=0 =  𝜙2 𝑦=0 = ⋯  = 𝜙𝑁 𝑦=0,            
 𝜙1 𝑦=𝑙1

=  𝜙2 𝑦=𝑙2
= ⋯  = 𝜙𝑁 𝑦=𝑙𝑁 = 0,

 
𝑑

𝑑𝑦
 𝜙𝑗  𝑦=0

= 0.                                        

𝑁

𝑗=1

  

J.P.Keating, Contemp. Math., 415, 191 (2006)



Quantum star graph

The eigenvalues can be found by solving the following equation

where corresponding eigenfunctions are given as

with normalization coefficient

 cot 𝑘𝑙𝑗  = 0 

𝑁

𝑗=1

 

𝜙𝑗
 𝑛 

(𝑦) =
𝐵𝑛

sin 𝑘𝑛 𝑙𝑗
sin 𝑘𝑛 𝑙𝑗 − 𝑦  

𝐵𝑛 =
 

2

 
𝑙𝑗 − sin 2𝑘𝑛 𝑙𝑗

sin2 𝑘𝑛 𝑙𝑗
𝑗

 



Quantum transport

𝐽𝑘 𝑥, 𝑡 =
1

2𝑖
 Ψ𝑘

∗ 𝑥, 𝑡 
𝑑Ψ𝑘

𝑑𝑥
− Ψ𝑘(𝑥, 𝑡)

𝑑Ψ𝑘
∗

𝑑𝑥
  

Ψ𝑘 𝑥, 𝑡 =  𝑒−𝑖𝐸𝑛 𝑡

𝑛

𝜓𝑘
 𝑛 
(𝑥) 

Probability current



Quantum transport

  𝐽𝑘 𝑥, 0 , 𝐽𝑘(𝑥, 𝜏)  

=  𝑑𝑥 𝐽𝑘 𝑥, 0 𝐽𝑘 𝑥, 𝜏 − 𝐽𝑘 𝑥, 0 𝐽𝑘 𝑥, 𝜏  

𝐿𝑘

0

 

𝜎𝑘 𝑥 =
1

𝜔
 𝑑𝜏𝑒−𝑖𝜔𝜏  𝐽𝑘 𝑥, 0 , 𝐽𝑘(𝑥, 𝜏)  

∞

0

 

Conductivity



PT-symmetric quantum mechanics

Since from the beginning of quantum physics people

believed that to have real energy spectrum Hamiltonian

operator should be Hermitian (self-adjoint). This fact was

considered as necessary and enough condition for the

realness of the spectrum. However such faith was broken in

1998 by Bender and Boettcher.



PT-symmetric quantum mechanics

In 1998, Bender and Boettcher [Phys. Rev. Lett. 80 5243

(1998)] showed that quantum systems with a non-Hermitian

Hamiltonian can have a set of eigenstates with real

eigenvalues (a real spectrum).

In other words, they found that the Hermiticity of the

Hamiltonian is not a necessary condition for the realness of

its eigenvalues, and new quantum mechanics can be

constructed based on such Hamiltonians.



Region of broken

PT symmetry

Region of unbroken

PT symmetry

PT phase

transition

C. Bender and S. Boettcher, PRL 80, 5243 (1998) 



Examples of PT-symmetric 

systems

𝐻 = 𝑝2 + 𝑥2𝐾 𝑖𝑥 𝜖

ℒ =
1

2
𝜕𝜙 2 +

1

2
𝑚2𝜙2 + 𝑔𝜙2 𝑖𝜙 𝜖 𝜖 ≥ 0

ℒ =
1

2
𝜕𝜙 2

1

2
𝑖 ത𝜓𝜕𝜓 +

1

2
𝑆′ 𝜙 ത𝜓𝜓 +

1

2
𝑆 𝜙 2 =

=
1

2
𝜕𝜙 2 +

1

2
𝑖 ത𝜓𝜕𝜓 +

1

2
𝑔 1 + 𝜖 𝑖𝜙 𝜖 ത𝜓𝜓 −

1

2
𝑔2 𝑖𝜙 2+2𝜖



PT-Symmetric inner product

𝑓, 𝑔 = න𝑑𝑥 𝑃𝑇𝑓 𝑥 𝑔 𝑥 

න𝑑𝑥𝑔 𝑥 𝑃𝑇𝐻𝑓 𝑥 = න𝑑𝑥𝐻𝑔 𝑥 𝑃𝑇𝑓 𝑥



Introducing of PT-Symmetry 

in a quantum system

Similarly to that in Hermitian quantum

mechanics, PT-symmetry in a quantum system

can be introduced either via the boundary

conditions, or complex PT-symmetric

potential.



Maxwell's equations reduce to the scalar Helmholtz equation

It formally coincides with the stationary Schrodinger  equation 

PT-symmetry in optics

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑧2
+

𝜔

𝑐

2

𝜀 𝑥, 𝑧 𝐸 𝑥, 𝑧 = 0

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑧2
𝜓𝑘 𝑥, 𝑧 −

2𝑚 𝑉 𝑥, 𝑧 − 𝐸𝑘

ℏ2
𝜓𝑘 𝑥, 𝑧 = 0



Optical analog of the potential energy in quantum mechanics is the

permittivity in optics: PT-symmetry condition for the optical system is

defined as the condition imposed on the permittivity of the medium

PT-symmetry in optics

The stationary Schrödinger equation does not include the time dependence,

and therefore the time reversal operation 𝑇 is equivalent conjugation 𝐾.

Re 𝜀 𝜔, 𝑥, 𝑧 = Re 𝜔,−𝑥,−𝑧

Im 𝜀 𝜔, 𝑥, 𝑧 = − Im 𝜔,−𝑥,−𝑧





Skew-Hermitian product on graph, which is defined for arbitrary 

differential operator, 𝐻 as

Ω 𝜓,𝜙 = 𝐻𝜓,𝜙 − 𝜓,𝐻𝜙

Ω 𝜓,𝜙 = − 

𝑗

𝑁

𝜙∗
𝑗
0

𝑑𝜓𝑗 0 

𝑑𝑥
− 𝜓𝑗 0 

𝑑𝜙∗
𝑗
0

𝑑𝑥
+

+ 

𝑗

𝑁

𝜙∗
𝑗
𝐿

𝑑𝜓𝑗 𝐿 

𝑑𝑥
− 𝜓𝑗 𝐿 

𝑑𝜙∗
𝑗
𝐿

𝑑𝑥
= 0

PT-symmetric quantum graph



Boundary conditions I

Boundary conditions II

D. U. Matrasulov, K. K. Sabirov, J. R. Yusupov, J. Phys. A 52 155302 (2019) 



𝑒𝑖𝑘𝐿1 1 − 𝑒2𝑖𝑘𝐿2 1 − 𝑒2𝑖𝑘𝐿3 + 𝑒𝑖𝑘𝐿2 1 − 𝑒2𝑖𝑘𝐿1 1 − 𝑒2𝑖𝑘𝐿3 +

+𝑒𝑖𝑘𝐿3 1 − 𝑒2𝑖𝑘𝐿1 1 − 𝑒2𝑖𝑘𝐿2 = 0

𝜓𝑗 𝑥, 𝑘𝑛 = 𝐵
sin 𝑘𝑛 𝐿𝑗 − 𝑥

sin 𝑘𝑛𝐿𝑗

PT-symmetric quantum graph

Secular equation for finding energy spectrum

D. U. Matrasulov, K. K. Sabirov, J. R. Yusupov, J. Phys. A 52 155302 (2019) 



PT-symmetric quantum graphs

D. U. Matrasulov, K. K. Sabirov, J. R. Yusupov, J. Phys. A 52 155302 (2019) 



Total current at the vertex (x = 0)

𝐽 0, 𝑡 = 𝐽1 0, 𝑡 + 𝐽2 0, 𝑡 + 𝐽3 0, 𝑡

𝐽𝑗 0, 𝑡 =
𝑖

2
𝜓𝑗 0, 𝑡 𝜕𝑥𝜓

∗
𝑗
0, 𝑡 − 𝜕𝑥𝜓𝑗 0, 𝑡 𝜓

∗
𝑗
0, 𝑡

𝜓𝑗 𝑥, 𝑡 =  

𝑛

𝐶𝑛𝑒
−𝑖𝑘2

𝑛
𝑡𝜙𝑗 𝑥, 𝑘𝑛 

Breaking of Kirchhoff rule

D. U. Matrasulov, K. K. Sabirov, J. R. Yusupov, J. Phys. A 52 155302 (2019) 



Breaking of Kirchhoff’s rule



PT-symmetric quantum graphs

D. U. Matrasulov, K. K. Sabirov, J. R. Yusupov, J. Phys. A 52 155302 (2019) 



Experimental realization

D. U. Matrasulov, K. K. Sabirov, J. R. Yusupov, J. Phys. A 52 155302 (2019) 



Reflectionless wave motion on graphs

• J.M. Harrison, U. Smilansky, B. Winn, J. Phys. A, Math. 
Gen. 40 (2007) 14181.

• P. Joly, M. Kachanovska, A. Semin, hal-01801394, 2018.

• K. Naimark, M. Solomyak, Proc. Lond. Math. Soc. 80 
(2000) 690.

• P. Exner, J. Lipovsky, J. Math. Phys. 51 (2010) 122107.

• P. Kurasov, R. Ogik, A. Rauf, Opusc. Math. 34 (2014) 
483.

• T. Cheon, Int. J. Adv. Syst. Measur. 5 (2012) 34.

“Quantum Mechanics of Artificial 

Material Structures”,        Sochi, 

February 17-21, 2020



Transparent boundary conditions

 For a given finite domain, Ω, the TBC sare imposed in 
such a way that the solution of a PDE in Ω 
corresponds to that in the whole space, i.e., the 
wave/particle moving inside/outside the domain does 
not ‘see’ the boundary of the domain. 

 Then such boundary conditions provide absence of the 
back scattering at the given point (or domain 
boundary) makes it transparent. 



Transparent quantum graphs:

Reflectionless wave propagation in  

quantum networks

Absence of backscattering at the graph vertices makes the 

graph transparent. Mathematically, such transparency can be 

provided by imposing so-called reflectionless boundary 

conditions at the graph vertex.



Transparent boundary conditions

• The  general  procedure  for  constructing  transparent boundary

conditions on a real line:

• 1. Split the original PDE evolution problem into coupled equations:  the 

interior and exterior problems.

• 2. Apply  a  Laplace  transformation  to  exterior  problems on Ωext.

• 3. Solve  (explicitly,  numerically)  the  ordinary  differential equations in 

the spatial unknownx.

• 4. Allow  only  “outgoing”  waves  by  selecting  the  decaying solution 

asx→±∞.

• 5. Match Dirichlet and Neumann values at the artificial boundary.

• 6. Apply (explicitly, numerically) the inverse Laplace transformation



M. Ehrhardt and A. Arnold, Discrete Transparent Boundary Conditions for the Schrödinger 

Equation, Rivista di Mathematica della Universita di Parma, Volume 6, Number 4 (2001), 57-108.

Transparent quantum networks: 



Transparent boundary condition



Transparent boundary conditions



Transparent boundary conditions



Transparent quantum networks: 



Transparent quantum networks: 



Transparent quantum networks

J. R. Yusupov, K. K. Sabirov, M. Ehrhardt, and D. U. Matrasulov, Phys. Lett. A 383, 2382 (2019).



𝜕

𝜕𝑥
Ψ1 =

𝛼1

𝛼2

𝜕

𝜕𝑥
Ψ2 +

𝛼1

𝛼3

𝜕

𝜕𝑥
Ψ3

= −
+
−2𝑖𝑠𝛼1

2
1

𝛼2
2 +

1

𝛼3
2

𝜕

𝜕𝑥
Ψ1 𝑥 = 0, 𝑡 = 𝐴1

2

𝜋
𝑒−𝑖

𝜋
4

𝑑

𝑑𝑡
න

0

𝑡
 Ψ1 0, 𝜏

𝑡 − 𝜏
𝜏

where  𝐴1 = 𝛼1
2 𝛼2

−2 + 𝛼3
−2 .

The Laplace transformed current conservation (at x = 0) takes the 

form

Using the inverse transform we have

Transparent quantum networks

J. R. Yusupov, K. K. Sabirov, M. Ehrhardt, and D. U. Matrasulov, Phys. Lett. A 383, 2382 (2019).



1

𝛼1
2 =

1

𝛼2
2 +

1

𝛼3
2 .

Transparent quantum networks

Condition for transparency the continuity and current conservation:

J. R. Yusupov, K. K. Sabirov, M. Ehrhardt, and D. U. Matrasulov, Phys. Lett. A 383, 2382 (2019).



RELATIVISTIC QUASIPARTICLES IN TRANSPARENT 

QUANTUM GRAPHS

𝑖𝜕𝑡𝜙𝑗 = −𝑖 𝜕𝑥𝜒𝑗 + 𝑚𝜙𝑗 ,

𝛼1𝜙1 0, 𝑡 = 𝛼2𝜙2 0, 𝑡 = 𝛼3𝜙3 0, 𝑡 ,

1

𝛼1
𝜒1 0, 𝑡 =

1

𝛼2
𝜒2 0, 𝑡 +

1

𝛼3
𝜒3 0, 𝑡 .

Dirac equation ( ℏ = 𝑐 = 1 :

Vertex boundary conditions: Weight continuity

Vertex boundary conditions: Kirchoff rules

𝑖𝜕𝑡𝜒𝑗 = −𝑖 𝜕𝑥𝜙𝑗 − 𝑚𝜒𝑗 .

J. R. Yusupov, K. K. Sabirov, Q.U. Asadov, M. Ehrhardt, and DM Phys.Rev. E, 101, 062208 (2020)



𝜒1 0, 𝑡 = 𝐴 [
𝑑

𝑑𝑡

0

𝑡
𝐼0 𝑚 𝑡 − 𝜏 𝜙1 0, 𝜏 𝑑𝜏 +

𝑖𝑚 
0

𝑡
𝐼0 𝑚 𝑡 − 𝜏 𝜙1 0, 𝜏 𝑑𝜏],

1

𝛼1
2 =

1

𝛼2
2 +

1

𝛼3
2 .

RELATIVISTIC QUASIPARTICLES IN TRANSPARENT QUANTUM 
GRAPHS

where 𝐴1 = 𝛼1
2 𝛼2

−2 + 𝛼3
−2 and 𝐼0 𝑧 – Bessel functions

J. R. Yusupov, K. K. Sabirov, Q.U. Asadov, M. Ehrhardt, and DM Phys.Rev. E, 101, 062208 (2020)



Dyamics ofexcitons in branched 

conducting polymers

Model: metric graph based approach

Branched polymer → Metric graph



Transport of excitons: 

Transmission through the branching point

J.R.Yusupov, Kh.Sh.Matyokubov, K.K.Sabirov, DM, Chem. Phys., 537, 110861 (2020)



Exciton’s reflection coefficient at the polymer branched point.

Transport of excitons: 

Transmission through the branching point



Further progress made in modeling 

of  transparent networks

K. K. Sabirov, J. R. Yusupov, M. M. Aripov, M. Ehrhardt, and D. U. Matrasulov. 
Reflectionless propagation of Manakov solitons on a line: A model based on the 
concept of transparent boundary conditions. Phys. Rev. E 103, 043305 (2021)

J.R.Yusupov, Kh.Sh.Matyokubov, K.K.Sabirov, D.U.Matrasulov. Exciton dynamics 
in branched conducting polymers: Quantum graphs based approach.. Chem. Phys., 
537, 110861 (2020)

K.K. Sabirov, J.R. Yusupov, Kh.Sh. Matyokubov. Dynamics of polarons in branched 
conducting polymers. NANOSYSTEMS: Physics, Chemistry, Mathematics 11 , 183 
(2020)

J.R. Yusupov, K.K. Sabirov, M. Ehrhardt, D.U. Matrasulov. Transparent nonlinear 
networks. Phys. Rev. E 100, 032204 (2019)



Summary

Basic theory for particle and wave dynamics in quantum 

networks is presented.

Theory of PT-symmetric graphs: 

Breaking Hermitticity in quantum graphs

Experimental realization in microwave fibers

Transparent quantum graphs: Reflectionless transmission of 

waves through the vertices.



Outlook

Quantum teleportation on networks

Entangled quantum networks

Qubits in networks

Relativistic quantum graphs: Weyl and Majorana fermions 

in networks

Transparent microwave networks
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