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Abstract. The problem of the analytical construction of the optimal regulator of oscillatory systems with liquid dampers on the 
complex plane is considered. Since the fractional derivative is included in the differential equation describing the oscillatory 
systems with liquid dampers movement, the corresponding input-output transfer function also contains fractional rational 
orders, the general Larin parameterization scheme is modifying for this case. The results are illustrated by numerical examples 
and it is shown that they coincide with Letov’s А.М. analytical construction of the optimal regulator. 
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1. Introduction 

The problems of analytical construction of optimal regulators (ACOR) [1] play an important role in solving many practical 
problems, such as control flight problems [2, 3], vibration protection problems [4], control of nuclear reactors [5], as well as during 
construction optimal regulators in oil production [6], etc. In all these problems, the dynamics of the system is described by 
systems of classical ordinary differential equations. However, lately much attention has been paid to problems in which the 
movement of an object is described by a system whose equations include fractional derivatives in addition to ordinary derivatives 
[7]. 

Indeed, when a liquid damper enters a simple oscillatory system (OS), i.e. the mass of the OS moves inside the Newtonian 
fluid (see Fig. 1), then the mathematical model of this process is described by a second-order differential equation, which also 
includes the fractional derivative in [8, 10]. Naturally, for these systems, its optimal stabilization is relevant. Indeed, during oil 
production by the rod- pumping method , the plunger moves in a Newtonian fluid , and it is very important to stabilize it [10] in 
the neighborhood of corresponding programm trajectories and controls [11-15]. 

Recently, using ACOR [1], this problem is solved in the time domain, i.e. an optimal regulator is constructed that gives the 
closed-loop system asymptotic stability [15]. An example of this may be the case when the valve of the plunger does not work [10, 
16] and the mass of the plunger moves idle, i.e. there is a constant volume of fluid inside the plunger. 

The ACOR analogue for solving this problem in many cases can be limited, for example, when there are no restrictions on the 
controls in the quadratic quality criterion. In addition, it is necessary to bring the sought equation to a normal system, and this 
can increase the system dimension much more [15] . Therefore, for the solution of this problem it is possible to use ACOR , the 
frequency methods of the synthesis problem of optimal systems [17-26], etc. However, among them, the most common is the 
frequency method for solving the synthesis problem in the complex region [4, 17], which, in particular, is applied to stabilize the 
vibration protection system [4]. This method was further developed in a more general form [18–20] and in [6, 19, 20] it was shown 
that the remaining methods [20–25] are obtained from the results of [17–22] as special cases. Further, we will call this method as 
Larin frequency method to solve the problem of synthesis of optimal systems and will apply it to solution of the stabilization 
problem [27] of oscillatory systems with liquid dampers [8, 9], i.e. the case of fractional-derivative order systems [28-31]. 

In this paper, the problems of synthesis of optimal regulators for the simplest oscillatory systems [32,33] with liquid dampers 
are posed. After the statement of the problem for the equation of motion, using the Laplace transform, the quadratic functional 
using the Fourier transform and the Parseval identity [34] proceeds to the corresponding problem on the complex plane. 

The case is considered when fractional orders are present in the denominator of the corresponding transfer function and VB 
Larin’s method is generalized [17-19] for the given case when the numerator and denominator are odd numbers. Also, when one 
of them is even, the regularization [15] of similar problems is constructed, i.e. any accuracy can be approximated by the order of 
the fractional derivative with such a fraction whose numerator and denominator are odd numbers. The results are illustrated by 
numerical examples and a specific form of optimal regulators is given. 
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Fig. 1. Schematic representation of the problem. 

2. Problem Statement 

2.1. Time domain 

Let the motion of an oscillatory system with liquid dampers [8] be described by the second order ordinary differential 
equation, along with the usual having a fractional derivative, in the form: 

( ) ( )( )y x aD y x by x uσ′′ + + =  (1a) 

with initial conditions 

1(0) 0, (0) ,y y y′= =  (1b) 

where 2 /a S mµρ= , /b k m=  and a rigid plate with a mass m  and area S  is considered, constant ρ  is fluid density, µ  

is viscosity of elasticity, constant k  characterizes the spring properties (see Fig.1).  
The problem is to find such linear control law 

u Ky= , (2) 

which would minimize the quadratic functional 

2 2

0

1
( )

2
J ry Cu dt

∞

= +∫  (3) 

in the condition of the asymptotic stability of a closed system (1)+(2). As is shown in [15] from (2) K  is operator polynomial, 

which depends on (2 1)/q qD −  and the solution of the problem ACOR (1)-(2) in the time domain requires the reduction of equation (1) 

to a normal system with a step 1 / ( / )q p qα = , p
 
and q  are odd natural numbers, (0,1) (1,2).α ∈ ∪  

2.2. Frequency domain 

Now we will act differently, i.e. let us consider the solution of the AKOR problem (1) - (3) in the frequency domain. To do this, 
we apply the Laplace transform to equation (1). Then equation (1) takes the form 

( ) ( ) ( ) ( ) ( ),P s y s M s u s sψ= +ɶ ɶ  (4) 

where ( )y sɶ  and ( )u sɶ  are Laplace transform of a function ( )y t  and ( )u t , accordingly, 

2 /
1( ) , 1, ( )p qP s s as b M s yψ= + + = = . (4’) 

If for functional (3), we use the Fourier transform and apply the Parseval identity [32], then we have 

1
( ( ) ( ) ( ) ( ))

2

i

i

J ry s y s cu s u s ds
iπ

∞

∞−

= − + −∫ ɶ ɶ ɶ ɶ . (5) 

Then the task will be to find such law of regulation 

0 1( ) ( ) ( ) ( )s u s s y sω ω=ɶ ɶ  (6) 

so that the closed-loop system (4) + (6) would be asymptotically stable, and the functional (5) would take a minimum value. 
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3. LarinV.B. Parameterization [17] 

As in [17-21], we construct a matrix Z  

( ) ( )

( ) ( )

P s M s
Z

s sα β

 − =  
 

, (7) 

where we have to choose the polynoms of parameters ( )sα  and ( )sβ , so that, 1Z−  was analytic on the right half-plane. For 

this det ( ) ( ) ( ) ( )Z P s s M s sβ α= +  must be as Gurvich, or constant, i.e.in this case, it suffices to choose 

( ) 0sβ = , ( ) 1sα = . (8) 

Using the Larin parameterization [17-19] we can easily show that 1 0( ) ( ) / ( )s s sω ω ω=  is defined as follows 

( ) ( ) 1
( ) ,

( )

s P s
s

s
ω

Φ −
=

Φ
 (9) 

where ( )sΦ  is Larin parameter, which is physically realizable-analytical on the right half-plane [17] 

0( )
( ) ,

( )

B s
s

D s
Φ =−  (10) 

but 

0

( )
( ) ( ) ,

( )

T s
B s B s

D s
−+ =

−
 

2
1( ) ( ) ( ( ) ( ))D s D s r cP s P s ψ− = + −  

2
1( ) ( )T s cP s ψ=− − . 

(11) 

Here 0( )B s  is an integer part, fractional part of the function ( )B s−  has poles in the right half-plane after separation of the 

expression ( ) / ( ),T s D s− ( )D s  has zeros in the left half-plane after factorization of the expression (11). Substituting ( )sΦ from (10) 

into (9), for the feedback circuit coefficient ( )sω , we have the following expression 

0

0

0 0

( )
( ) 1

( ) ( ) ( ) ( )
( )

( ) ( )
( )

B s
P s

D s B s P s D s
s

B s B s
D s

ω

− −
+

= =
−

 (12) 

Thus from (13) 

0 0 1 0( ) ( ), ( ) ( ) ( ) ( )s B s s B s P s D sω ω= = +  (13) 

Now we show that the closed-loop system (4), (6) and (13) is asymptotically stable. We compose the determinant of the 
coefficients (4), (6) and take into account (13) 

0 1

1 0

0 0

( ) ( )
det ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ),

P s M s
P s s M s s

s s

P s B s P s B s D s D s

ω ω
ω ω

 −  = − + − 
=− + + =

  

i.e., the closed system is asymptotically stable. Another parameterization, the so-called Youla-Kucera-Desoer [23-25], unlike 

parameterization [17-19], suggests choosing ( )sα  and ( )sβ  from the following Diophantine equation 

( ) ( ) ( ) 1P s s M sβ α+ = , (14) 

which is a special case of LarinV.B. parameterization [17,18,21, 22, 26]. Note that (8) also satisfies the Diaphont equation (14). 
And this is due to the fact that (14) is a special case of Gurvich from (7), i.e. the results of [23–25] are obtained as a special case of 
[17–19]. We illustrate the above with the following specific example. 

4. Example 

Let in (1) 

1

1
3, 1, , 1, 1, 1.

3
a b r cα ψ= = = = = =   
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Then from (4’) 

2 1/3( ) 3 1, 1P s s s M= + + =  (Ex.1) 

and from (10) 

2 1 /3( ) 3 1T s s s=− + −  (Ex.2) 

2 1/3 2 1/3 4 2 2 /3( ) ( ) 1 ( 3 1)( 3 1) 2 9 2D s D s s s s s s s s− = + + + − + = + − +  (Ex.3) 

Now we write (Ex.3) with a step 1 / 3  in the following form: 

1/3 12 1/3 6 1 /3 2( ) ( ) ( ) 2( ) 9( ) 2D s D s s s s− = + − +  (Ex.4) 

We factorize (Ex.4) using [21,22] and for ( )D s , we have the following expression 

1 /3 6 1 /3 5 1 /3 4 1 /3 1 /3( ) ( ) 4.38092( ) 9.5964( ) 13.2864 12.162 6.5878 1.4142D s s s s s s s= + + + + + + ,  

whose zeros are in the left half-plane. Then from (10) we calculate 0( )B s which is equal to 1− , i.e. 0( ) 1B s =− .  

Thus, the equation of regulator on the complex plane (6), (13) has the form 

1 /3 2 /3 4 /3 5/3( ) ( 0.4142 3.5878 12.162 13.2864 9.5964 4.3809 ) ( )u s s s s s s y s= − − − − − −ɶ ɶ  (Ex.5) 

and in the time domain will be 

1 /3 2 /3 4 /3 5/3( ) 0.4142 ( ) 3.5878 ( ) 12.162 ( ) 13.2864 ( ) 9.5964 ( ) 4.3809 ( ).u t y t D y t D y t Dy t D y t D y t=− − − − − −  (Ex.6) 

Note that the result (Ex.6) completely coincides with the result of [15] and it is shown there that the closed-loop system (1), 
(Ex.1), (Ex.6) is asymptotically stable. 

5. Conclusion 

The Larin parameterization is generalized to solve the linear-quadratic optimization problem of oscillatory systems with 
liquid dampers on the complex plane. Such an approach will allow us to extend this result to the general case, also the Larin 
parameterization can be used to stabilize the rod - pumping unit in oil production. 
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Nomenclature 

a  2 /S mµρ=  ρ  Fluid density [kg/m3] 
b  /k m=  µ  Viscosity of elasticity, constant 
m  Mass of the rigid plate [kg] k  Characterizes the spring properties 
S  Area of the rigid plate [m2]   
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