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This paper deals with a problem of finding a bounded in a strip solution to a system of second order 

hyperbolic evolution equations, where the matrix coefficient of the spatial derivative tends to zero as t → 

∓∞ . The problem is studied under assumption that the coefficients, the right-hand side of the system, 

and the boundary function belong to some spaces of functions continuous and bounded with a weight. 

By introducing new unknown functions, the problem in question is reduced to an equivalent problem 

consisting of singular boundary value problems for a family of first order ordinary differential equations 

and some integral relations. Existence conditions are established for a bounded in a strip solutions to a 

family of ordinary differential equations, whose matrix tends to zero as t → ∓∞ and the right-hand side 

is bounded with a weight. Conditions for the existence of a unique solution to the original problem are 

obtained. 
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. Introduction 

We consider the system of hyperbolic equations with mixed 

erivatives 

 xt = A (x, t) u x + B (x, t) u t + C(x, t) u + f (x, t) , (1)

n a strip �∗ = [0 , ω] × (−∞ , ∞ ) . Here u x (x, t) = 

∂u (x,t) 
∂x 

, u t (x, t) =
∂u (x,t) 

∂t 
, u xt (x, t) = 

∂ 2 u (x,t) 
∂ t∂ x 

. 

In recent years, various classes of hyperbolic evolution equa- 

ions and singular problems for them have been extensively stud- 

ed. It is associated primarily with their numerous applications in 
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hysics, biology, chemistry, etc. Evolution equations arise in math- 

matical modeling of various processes and phenomena in natu- 

al science, acoustics, and neural networks [1,4–8,21–23,27–30] . A 

umber of significant results have been obtained for a wide class 

f evolution equations; see [5,23,29,30] and references therein. 

owever, there has been little investigation of bounded solutions 

o systems of hyperbolic equations with mixed derivative (1). In 

24–26] , bounded in a strip solutions to systems of hyperbolic 

quations were studied in the case of diagonal dominance in the 

atrix A (x, t) ; necessary conditions for their existence and neces- 

ary and sufficient conditions for their uniqueness were obtained. 

We will use the following notation: 

C ∗(�∗, R 

n ) is the space of bounded functions u : �∗ → R 

n that

re continuous with respect to t and uniformly continuous in x 

ith respect to t, with the norm ‖ u ‖ ∗ = sup 
(x,t) ∈ �∗

‖ u (x, t) ‖ ; 
C ∗(R , R 

n ) is the space of bounded functions ψ : R → R 

n with

he norm ‖ ψ ‖ ∗ = sup 
t∈ R 

‖ ψ (t) ‖ . 
Suppose the columns of the matrices A (x, t) , B (x, t) , C(x, t) , and

he vector-function f (x, t) belong to C ∗(�∗, R 

n ) . We are interested 
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n the solutions to system (1) that satisfy the conditions 

 (0 , t) = ψ(t) , t ∈ R , u x (x, t) ∈ C ∗(�∗, R 

n ) , (2)

here ψ(t) ∈ C ∗(R , R 

n ) is a continuously differentiable function 

ith 

˙ ψ (t) ∈ C ∗(R , R 

n ) . 

A classical solution to problem (1), (2) is a function u (x, t) that

as continuous partial derivatives u x (x, t) , u t (x, t) , and u xt (x, t) in
∗ and, for all (x, t) ∈ �∗, satisfies system (1) and additional con- 

itions (2) . 

It follows from (2) and the boundedness of ψ(t) on R that 

 (x, t) ∈ C ∗(�∗, R 

n ) . Since ˙ ψ (t) is bounded on R , from (1) we de-

uce that u t (x, t) and u xt (x, t) belong to C ∗(�∗, R 

n ) as well. 

In [2] , problem (1), (2) was studied by the parametrization 

ethod [18] . Sufficient conditions for the unique solvability of 

he problem were obtained in terms of a two-sided infinite ma- 

rix Q ν,h (x ) constructed via A (x, t) . It was shown that the main

ondition for the unique solvability is the bounded invertibility 

f Q ν,h (x ) . The properties of bounded solutions to problem (1), 

2) were established and approximating boundary value problems 

n a finite region were constructed. In [3] , the results obtained in 

2] were applied to finding bounded periodic solutions to system 

1) . 

Of particular interest are singular boundary value problems for 

volution equations with coefficients or right-hand sides tending 

o zero as time variable approaches infinity. One of such problems 

s the problem of finding a bounded solution to a nonhomoge- 

eous linear system of ordinary differential equations whose ma- 

rix tends to zero as t → ∓∞ . It is known that in this case the cor-

esponding homogeneous system does not admit an exponential 

ichotomy, i.e. not for every continuous and bounded right-hand 

ide the nonhomogeneous system has a solution bounded on the 

hole real line [10] . The same issue occurs for singular boundary 

alue problems for hyperbolic evolution Eq. (1) in the case when 

 (x, t) approaches zero as t → ∓∞ . 

Suppose that the matrix A (x, t) satisfies the condition 

 A (x, t) ‖ ≡ max 
j 

n ∑ 

k =1 

| a jk (x, t) | ≤ α(t) , where α(t) is a continuous

nd positive on R function such that 

 0 

−∞ 

α(t) dt = ∞ , 

∫ ∞ 

0 

α(t) dt = ∞; (3) 

lim 

→−∞ 

α(t) = 0 , lim 

t→ + ∞ 

α(t) = 0 . (4) 

It is known that under assumptions (3), (4) problem (1), (2) has 

 classical solution not for all f (x, t) ∈ C ∗(�∗, R 

n ) . The following

xample illustrates this statement. 

Example. Let us consider the following problem 

 xt = 

2 t 

1 + t 2 
u x + f (x, t) , (x, t) ∈ �∗, (5) 

 (0 , t) = 0 , t ∈ R , u x (x, t) ∈ C ∗(�∗, R 

n ) . (6)

Obviously, the function α(t ) = 

2 | t | + 1 

1 + t 2 
satisfies (3), (4) . 

For f (x, t) = 0 , the set of solutions to (5) is u (x, t) = (1 +
 

2 ) 
x ∫ 

0 

C(ξ ) dξ , where C(x ) is a continuous on [0 , ω] function. The

nly classical solution to problem (5), (6) in this set is u (x, t) = 0 . 

If f (x, t) = 1 , then u (x, t) = (1 + t 2 ) 
x ∫ 

0 

C(ξ ) dξ + (1 + t 2 ) x arctg t.

one of these functions is a classical solution to problem (5), (6) . 

The question now arises: is it possible to solve the problem of 

nding a classical solution to problem (1), (2) under assumptions 

3), (4) , if we place some additional requirements on the input data 

f problem? 
2 
In this paper, we study the existence and uniqueness of a classi- 

al solution to problem (1), (2) subject to some extra assumptions 

egarding the coefficients B (x, t) and C(x, t) , the right-hand side 

f (x, t) , and the derivative of the boundary function ψ(t) . 

To this end, we introduce the following spaces of functions con- 

inuous and bounded with a weight on �∗ and R (a weight func- 

ion is chosen so that the behavior of A (x, t) as t → ∓∞ is taken

nto account): 

C ∗, 1 /α(�∗, R 

n ) is the space of functions f : �∗ → R 

n that are

ounded with the weight 1 /α(t) , continuous in t ∈ R for x ∈ [0 , ω] ,

nd uniformly continuous in x ∈ [0 , ω] for t ∈ R , with the norm

 f ‖ α = sup 
(x,t) ∈ �∗

‖ f (x, t) /α(t) ‖;
C ∗, 1 /α(R , R 

n ) is the space of bounded with the weight 1 /α(t)

unctions ψ : R → R 

n with the norm ‖ ψ‖ α = sup 
t∈ R 

‖ ψ(t) /α(t) ‖ . 
Under assumptions (3),(4), we pose singular boundary value 

roblem (1), (2) : find a classical solution to problem (1),(2) if 

he columns of the matrix C(x, t) and function f (x, t) belong to 

 ∗, 1 /α(�∗, R 

n ) and 

˙ ψ (t) ∈ C ∗, 1 /α(R , R 

n ) . 

The rest of the paper is organized as follows. In Section 2 prob- 

em (1), (2) is reduced to an equivalent problem consisting of sin- 

ular boundary value problems for a family of first order ordinary 

ifferential equations and integral relations. This problem can be 

nterpreted as the problem of finding a bounded in a strip solu- 

ion to a family of systems of ordinary differential equations with 

wo unknown functions that are connected with the desired solu- 

ion and its derivative via some integral relations. This requires a 

eparate study. 

Section 3 is therefore devoted to the problem of finding a 

ounded in a strip solution to a family of systems of ordinary dif- 

erential equations with the matrix tending to zero as t → ∓∞ and 

he right-hand side bounded with a weight. The strip �∗ is parti- 

ioned taking into account the behavior of a function that is an up- 

er bound of ‖ A (x, t) ‖ . The problem in question is thereby trans-

ormed into an equivalent problem with parameters that are equal 

o the values of the solution at the partition points. Since the so- 

ution to original problem is bounded, the sequence of parameters 

s required to be bounded as well. We have obtained conditions 

or the unique solvability of the problem in terms of a two-sided 

nfinite block band matrix that is composed of sums of iterated in- 

egrals of A (x, t) over the partition subintervals. 

In Section 4 , based on the results of the previous section, we 

ave established conditions for the existence of a unique solution 

o singular boundary value problem (1), (2). 

. Reduction problem (1), (2) to a boundary value problem for 

 family of ordinary differential equations and integral 

elations 

By introducing new unknown functions v (x, t) = u x (x, t) and 

 (x, t) = u t (x, t) , problem (1), (2) is reduced to an equivalent

roblem 

 t = A ( x, t ) v + F ( x, t, w ( x, t ) , u ( x, t ) ) , v ( x, t ) ∈ C ∗( �∗, R 

n ) , (2.1) 

u ( x, t ) = ψ ( t ) + 

∫ x 

0 

v ( ξ , t ) dξ , 

 ( x, t ) = 

˙ ψ ( t ) + 

∫ x 

0 

v t ( ξ , t ) dξ , (2.2) 

here (x, t) ∈ �∗, F = B (x, t) w (x, t) + C(x, t) u (x, t) + f (x, t) . The

ondition u (0 , t) = ψ(t) is taken into account in relations (2.2) . 

A triple of functions { v (x, t) , u (x, t) , w (x, t) } continuous on �∗

s called a solution to problem (2.1), (2.2) if the function v (x, t) ∈
 ∗(�∗, R n ) is continuously differentiable with respect to t in �∗
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nd satisfies the one-parameter family of systems of ordinary dif- 

erential Eq. (2.1) , and the functions u (x, t) and w (x, t) are con-

ected with v (x, t) and v t (x, t) by the integral relations (2.2) . 

Problems (1), (2) and (2.1), (2.2) are equivalent in the following 

ense. Let u (x, t) be a classical solution to problem (1), (2) . Then,

f we compose the triple of functions { v (x, t) , u (x, t) , w (x, t) } with

 (x, t) = u x (x, t) and w (x, t) = u t (x, t) , we have 

 (x, t) = u (0 , t) + 

∫ x 

0 

u ξ (ξ , t ) dξ = ψ(t ) + 

∫ x 

0 

v (ξ , t) dξ, 

 (x, t) = u t (x, t) = u t (0 , t) + 

∫ x 

0 

u tξ (ξ , t) dξ = u t (0 , t) 

+ 

∫ x 

0 

u ξ t (ξ , t) dξ = 

˙ ψ (t) + 

∫ x 

0 

v t (ξ , t) dξ , 

 t = u xt = A (x, t) u x + B (x, t) u t + C(x, t) u + f (x, t) 

= A (x, t) v + F (x, t, w (x, t) , u (x, t)) , 

 (x, t) = u x (x, t) ∈ C ∗(�∗, R 

n ) . 

ence the triple composed is a solution to problem (2.1), (2.2) . 

Conversely, if a function triple { v (x, t) , u (x, t) , w (x, t) } is a so-

ution to problem (2.1), (2.2) , then it follows from (2.2) that 

 (x, t) satisfies the condition u (0 , t) = ψ(t) and has continuous

artial derivatives u x (x, t) = v (x, t) ∈ C ∗(�∗, R n ) , u t (x, t) = 

˙ ψ (t) +
x 
 

0 

v t (ξ , t) dξ = w (x, t) , u xt (x, t) = v t (x, t) , u tx (x, t) = v t (x, t) . Substi-

uting them into the right-hand side of (2.1) we get u (x, t) satis-

es (1) for all (x, t) ∈ �∗. Since this function also satisfies (2), we

onclude that u (x, t) is a classical solution to problem (1), (2). 

For fixed u (x, t) , w (x, t) in problem (2.1), (2.2) , we need to

nd a solution to the one-parameter family of ordinary differen- 

ial equations that belongs to C ∗(�∗, R n ) . Therefore, in conjunction 

ith problem (2.1), (2.2) , we study the following problem. 

In �∗, we consider the family of ordinary differential equations 

 t = A (x, t) v + F (x, t) , v (x, t) ∈ C ∗(�∗, R 

n ) , (2.3)

nder assumption that the columns of the matrix A (x, t) and the 

ector-function F (x, t) belong to C ∗(�∗, R n ) . 
The problem of finding a function v (x, t) ∈ C ∗(�∗, R n ) that sat-

sfies (2.3) for all (x, t) ∈ �∗ will be referred as Problem 1 . 

Problem 1 was studied in [13,14] by the parametrization 

ethod with uniform partitioning. Necessary and sufficient con- 

itions for the unique solvability were obtained in terms of a two- 

ided infinite block band matrix that is constructed via integrals of 

 (x, t) over intervals of length h > 0 . In [15,16] , based on the equiv-

lence of Problem 1 and problem (1), (2), a coefficient criterion for 

he well-posedness of the latter problem was established. 

For fixed x ∈ [0 , ω] Problem 1 becomes the problem of finding

 solution to the system of ordinary differential equations, that 

s bounded on the whole real line. This problem was studied in 

9–12] ; in particular, the questions of solvability, exponential di- 

hotomy of the system, as well as approximation by solutions of 

oundary value problems on finite intervals were considered. A 

umber of fundamental results were obtained on the basis of the 

arametrization method. 

The parametrization method was originally developed to study 

egular two-point boundary value problems; in [18] necessary and 

ufficient conditions for their unique solvability were established. 

t was shown that one of the main conditions is the invertibility of 

 matrix Q ν (h ) , composed of the matrices of boundary conditions 

nd the system of differential equations for some ν(ν = 1 , 2 , . . . ) 

nd h > 0 . In [9] , the parametrization method was applied to the
3 
roblem of finding a bounded on R solution to a linear ordinary 

ifferential equation. Necessary and sufficient conditions for the 

ell-posedness of singular boundary value problems were estab- 

ished in terms of a two-sided infinite block band matrix Q ν,h , 

hose entries are composed through the sums of iterated inte- 

rals of the matrix of the equation over the partition intervals. 

he formulation of conditions for the well-posedness of regular 

nd singular boundary value problems in unified terms of matrices 

 ν (h ) and Q ν,h , respectively, made it possible to solve the problem

f approximation a singular problem by two-point boundary value 

roblems on a finite interval. The results obtained were extended 

o families of systems of ordinary differential equations [17] and 

onlinear problems [19] . 

Similarly to the above-mentioned problems, under assumptions 

3), (4) Problem 1 admits a bounded in �∗ solution not for every 

 (x, t) ∈ C ∗(�∗, R n ) . Indeed, let us consider the following problem

hat is analogous to problem (5), (6): 

 t = 

2 t 

1 + t 2 
v + F (x, t) , v (x, t) ∈ C ∗(�∗, R 

n ) . 

If F (x, t) = 0 then the set of all solutions to the differential

quation is of the form v (x, t) = C(x )(1 + t 2 ) , where C(x ) is a func-

ion continuous on [0 , ω] . In this set, v (x, t) = 0 is the only solution

ounded in �∗. 

But, if we take F (x, t) = 1 , the set of all solutions of the equa-

ion is of the form v (x, t) = (1 + t 2 )(C(x ) + arctg t) . None of this

olutions are bounded in �∗. 
The same question arises as to whether it is possible to solve 

he problem of finding a bounded in �∗ solution to Eq. (2.3) un- 

er certain requirements to the right-hand side F (x, t) . In the next 

ection we study the singular boundary value problem assuming 

hat F (x, t) ∈ C ∗, 1 /α(�∗, R 

n ) . 

. Singular boundary value problems for a family of systems of 

rdinary differential equations 

In �∗, consider the family of systems of differential equations 

 t = A (x, t) v + F (x, t) , (3.1) 

here the columns of A (x, t) and F (x, t) belong to the space

 ∗(�∗, R 

n ) . We assume ‖ A (x, t) ‖ ≤ α(t) , where α(t) > 0 is a func-

ion continuous on R and satisfying conditions (3), (4). 

The problem of finding a bounded in �∗ solution to (3.1) , when 

 (x, t) ∈ C ∗, 1 /α(�∗, R 

n ) , will be referred to as Problem 1 α . 

The problem of finding a solution to a system of ordinary dif- 

erential equations, that is bounded with a weight on the whole 

eal line, was studied in [20,31–33] by the parametrization method 

ith nonuniform partitioning. Necessary and sufficient conditions 

ere obtained for the well-posedness of the problem of finding a 

ounded on R solution to a linear ordinary differential equation 

ith the matrix tending to zero as t → ∓∞ and the right-hand 

ide bounded with a weight. Regular two-point boundary value 

roblems were constructed, that enable one to find an approximate 

olution to the singular problem to within a given accuracy. The 

utual relationship between the solvability of the singular prob- 

em and that of approximating regular problems was established. 

We now proceed to the study of Problem 1 α using the 

arametrization method with a nonuniform partition of the strip 

∗. 

We choose a number θ > 0 and make the partition �∗ = 

∞ ⋃ 

 = −∞ 

[0 , ω] × [ t s −1 , t s ) , where the points t s ∈ R , s ∈ Z , are defined

s follows: t 0 = 0 , 
t s ∫ 

t s −1 

α(t) dt = θ. 
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gths of the partition subintervals h s = t s − t s −1 , s ∈ Z , i.e., ˜ h (θ ) = 

(

 ( . . . , λs , λs +1 , . . . ) 
′ of vectors λs ∈ R 

n , s ∈ Z , with the norm ‖ λ‖ m n = 

s

 [ t] = ( . . . , v s (t) , v s +1 (t) , . . . ) ′ of continuous functions v s : [ t s −1 , t s ) → R n , 

s

ntinuous on [0 , ω] functions λ(x ) = ( . . . , λs (x ) , λs +1 (x ) , . . . ) ′ with the 

n

] → m n ( ̃  h (θ )) , 

ax 
0 ,ω] 

‖ v (x, [ ·]) ‖ 
m n ( ̃ h (θ )) 

;
e induced norm, where X is a Banach space. 
 ) onto the subregion �s = [0 , ω] × [ t s −1 , t s ) , s ∈ Z ; i.e., v s (x, t) = v (x, t) 

f  t) = v s (x, t) − λs (x ) , where λs (x ) = v s (x, t s −1 ) . The Problem 1 α is then 

t e problems with parameters 

(3.2) 

ṽ (3.3) 

t
(3.4) 

( (3.5) 

ng sense. If a pair (λ∗(x ) , ̃  v ∗(x, [ t])) is a solution to problem (3.2) –(3.5) , 

t

v

b (x, t) is a solution to Problem 1. Furthermore, if we assume F (x, t) ∈ 

C , if v (x, t) is a solution to Problem 1 α, i.e. it is a solution to Problem 1 

w  

λ

ṽ

s  (3.3) , continuity conditions at the partition points (3.4) , and bounded- 

n

roblems (3.2), (3.3) has a unique solution ̃

 v s (x, t) satisfying the family 

o

v  �s , s ∈ Z . (3.6) 

q. (3.6) and repeating this procedure ν(ν = 1 , 2 , . . . ) times, we get 

ṽ (3.7) 

w

D
 

+ 

+

F + . . . + 

+

G

Let ˜ h (θ ) denote the two-sided infinite sequence of the len

 . . . , h s (θ ) , h s +1 (θ ) , . . . ) ′ . 
We introduce the following notation: 

m n is the space of bounded two-sided infinite sequences λ =
up 
s 

‖ λs ‖;
m n ( ̃  h (θ )) is the space of bounded two-sided infinite sequences v

 ∈ Z , with the norm ‖ v [ ·] ‖ 
m n ( ̃ h (θ )) 

= sup 
s 

sup 
t∈ [ t s −1 ,t s ) 

|| v s (t) ||;
C([0 , ω] , m n ) is the space of two-sided infinite sequences of co

orm ‖ λ‖ 1 = max 
x ∈ [0 ,ω] 

‖ λ(x ) ‖ m n ;

C([0 , ω] , m n ( ̃  h (θ ))) is the space of continuous mappings v : [0 , ω
v (x, [ t]) = ( . . . , v s (x, t) , v s +1 (x, t) , . . . ) ′ , with the norm ‖ v ‖ 2 = m

x ∈ [
L (X ) is the space of bounded linear operators Z : X → X with th

Let v s (x, t) be the restriction of the function v (x, t) ∈ C ∗(�∗, R 

n

or (t, x ) ∈ �s . On each �s , s ∈ Z , we make the substitution ̃

 v s (x,

ransformed into the equivalent family of multipoint boundary valu

∂ ̃  v s 
∂t 

= A ( x, t ) [ v s + λs ( x ) ] + F ( x, t ) , ( x, t ) ∈ �s , 

 

 s (x, t s −1 ) = 0 , x ∈ [0 , ω] , s ∈ Z , 

lim 

→ t s −0 
˜ v s ( x, t ) + λs ( x ) = λs +1 ( x ) , x ∈ [ 0 , ω ] , s ∈ Z , 

λ(x ) , ̃  v (x, [ t])) ∈ C([0 , ω] , m n ) × C([0 , ω] , m n ( ̃  h (θ ))) . 

Problem (3.2) –(3.5) and Problem 1 α are equivalent in the followi

hen the function v ∗(x, t) , defined as 

 

∗( x, t ) = λ∗
s ( x ) + ̃

 v ∗s ( x, t ) , ( x, t ) ∈ �s , s ∈ Z , 

elongs to C ∗(�∗, R 

n ) and satisfies (3.1) for all (x, t) ∈ �∗, i.e. v ∗
 ∗, 1 /α(�∗, R 

n ) , then v ∗(x, t) is a solution to Problem 1 α . Vice versa

hen F (x, t) ∈ C ∗, 1 /α(�∗, R 

n ) , then the pair (λ(x ) , ̃  v (x, [ t])) , where

(x ) = ( . . . , v s (x, t s −1 ) , v s +1 (x, t s ) , . . . ) 
′ , 

 

 (x, [ t]) = ( . . . , v s (x, t) − v s (x, t s −1 ) , v s +1 (x, t) − v s +1 (x, t s ) , . . . ) 
′ , 

atisfies the family of differential equations (3.2) , initial conditions

ess condition (3.5) . 

For fixed values of the parameter λs (x ) , the family of Cauchy p

f integral equations 

˜ 
 s ( x, t ) = 

∫ t 

t s −1 

A ( x, τ ) [ ̃ v s ( x, τ ) + λs ( x ) ] d τ + 

∫ t 

t s −1 

f ( x, τ ) d τ, ( x, t ) ∈

Replacing ̃  v s (x, τ ) by the corresponding right-hand side of the E

 

 s (x, t) = D ν,s (h s (θ ) , x ) λs (x ) + F ν,s (h s (θ ) , x ) + G ν,s ( ̃  v , h s (θ ) , x ) , 

here 

 ν,s (h s (θ ) , x ) = 

∫ t s 

t s −1 

A (x, τ1 ) dτ1 + 

∫ t s 

t s −1 

A (x, τ1 ) 

∫ τ1 

t s −1 

A (x, τ2 ) dτ2 dτ1

 . . . + 

∫ t s 

t s −1 

A (x, τ1 ) . . . 

∫ τν−1 

t s −1 

A (x, τν ) dτν . . . dτ1 , 

 ν,s (h s (θ ) , x ) = 

∫ t s 

t s −1 

F (x, τ1 ) dτ1 + 

∫ t s 

t s −1 

A (x, τ1 ) 

∫ τ1 

t s −1 

F (x, τ2 ) dτ2 dτ1 

 

∫ t s 

t s −1 

A (x, τ1 ) . . . 

∫ τν−2 

t s −1 

A (x, τν−1 ) 

∫ τν−1 

t s −1 

F (x, τν ) dτνdτν−1 . . . dτ1 , 

 ν,s ( ̃ v , h s ( θ ) , x ) = 

∫ t s 

t 

A ( x, τ1 ) . . . 

∫ τν−1 

t 

A ( x, τν ) u s ( τν ) d τν . . . d τ1 . 

s −1 s −1 

4 
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s derived from (3.7) , we get the two-sided system of functional equa- 

t

[  

, x ) , x ∈ [ 0 , ω ] , s ∈ Z , (3.8) 

w

 to the left-hand side of system (3.8) . In each row of Q ν ( ̃  h (θ ) , x ) , 

t re, for all x ∈ [0 , ω] , this matrix maps the space m n into itself, and 

|  (x, t) belong to C ∗(�∗, R 

n ) , the matrix Q ν ( ̃  h (θ ) , x ) is continuous with 

r  , ω] , m n )) for all ν ∈ N . 

Q m n ) , (3.9) 

w

F

G

|  ] ) ‖ 2 , s ∈ Z , 

t > 0 and ̃

 v (x, [ t]) ∈ C([0 , ω] , m n ( ̃  h (θ ))) . 

 the pair (λ∗(x ) , ̃  v ∗(x, [ t])) , can be found as the limit of the sequence 

(

rator Q ν ( ̃  h (θ ) , x ) : C([0 , ω] , m n ) → C([0 , ω] , m n ) is boundedly invertible, 

meter λ(0) (x ) ∈ C([0 , ω] , m n ) from the equation 

for λs (x ) = λ(0) 
s (x ) , we find 

˜ v (0) (x, [ t]) ∈ C([0 , ω] , m n ( ̃ h (θ ))) . 

(3.9) , we get the equation 

ies of Cauchy problems (3.2), (3.3) on �s , s ∈ Z , for λs (x ) = λ(1) 
s (x ) , we 

e algorithm proposed and provides an estimate of the solution to Prob- 

l

T matrix Q ν ( ̃  h (θ ) , x ) : m n → m n be invertible for all x ∈ [0 , ω] and the fol- 

l

‖ (3.10) 

q (3.11) 

‖  α (3.12) 

P he right-hand side of system (3.2) that Q ν ( ̃  h (θ ) , x ) : C([0 , ω] , m n ) → 

C  , ω] , m n )) . Therefore, there exists a unique λ(0) (x ) ∈ C([0 , ω] , m n ) , and 

‖

e solution ̃

 v (0) 
s (x, t) . By applying the Gronwall - Bellman inequality, we 

o

‖

From (3.4) , substituting lim 

t→ t s −0 ̃
 v s (x, t) , s ∈ Z , by their expression

ions in parameters λs (x ) : 

 

I + D ν,s ( h s ( θ ) , x ) ] λs ( x ) − λs +1 ( x ) = −F ν,s ( h s ( θ ) , x ) − G ν,s ( ̃ v , h s ( θ )

here I is the identity matrix of order n . 

Let Q ν ( ̃  h (θ ) , x ) denote the block band matrix corresponding

he only nonzero elements are I + D ν,s (h s (θ ) , x ) and −I. Therefo

| Q ν ( ̃  h (θ ) , x ) || L (m n ) ≤ 2 + 

ν∑ 

j=1 

θ j 

j! 
. Since the columns of the matrix A

espect to x ∈ [0 , ω] in the norm of L (m n ) and Q ν ( ̃  h (θ ) , x ) ∈ L (C([0

We rewrite system (3.8) in the form 

 ν

(
˜ h ( θ ) , x 

)
λ( x ) = −F ν

(
˜ h ( θ ) , x 

)
− G ν

(
˜ v , ̃  h ( θ ) , x 

)
, λ( x ) ∈ C ( [ 0 , ω ] , 

here 

 ν ( ̃  h (θ ) , x ) = ( . . . , F ν,s (h s (θ ) , x ) , F ν,s +1 (h s +1 (θ ) , x ) , . . . ) ′ , 

 ν (u, ̃  h (θ ) , x ) = ( . . . , G ν,s (u, h s (θ ) , x ) , G ν,s +1 (u, h s +1 (θ ) , x ) , . . . ) ′ . 
It follows from the inequalities 

| F ν,s ( h s ( θ ) , x ) || ≤
ν∑ 

j=1 

θ j 

j! 
‖ F ‖ α, ‖ G ν ( ̃ v , h s ( θ ) , x ) ‖ ≤ θν

ν! 
‖ ̃

 v ( x, [ t

hat F ν ( ̃  h (θ ) , x ) and G ν ( ̃  v , ̃  h (θ ) , x ) belong to C([0 , ω] , m n ) for all θ
The solution to multipoint boundary value problem (3.2) –(3.5) ,

λ(k ) (x ) , ̃  v (k ) (x, [ t])) , which is defined by the following algorithm. 

Step 0. Assuming that for some chosen θ > 0 and ν ∈ N the ope

we determine an initial approximation of the functional para

Q ν ( ̃  h (θ ) , x ) λ(x ) = −F ν ( ̃  h (θ ) , x ) . 

Then, solving the Cauchy problems (3.2), (3.3) on �s , s ∈ Z , 

Step 1. Substituting ̃  v (0) 
s (x, t) , s ∈ Z , into the right-hand side of 

Q ν ( ̃  h (θ ) , x ) λ(x ) = −F ν ( ̃  h (θ ) , x ) − G ν ( ̃  v (0) , ̃  h (θ ) , x ) , 

from which we find λ(1) (x ) ∈ C([0 , ω] , m n ) . Solving the famil

get ˜ v (1) (x, [ t]) ∈ C([0 , ω] , m n ( ̃ h (θ ))) . 

And so on. 

The following theorem establishes convergence conditions of th

em 1 α . 

heorem 1. Let, for some θ > 0 and ν(ν = 1 , 2 , . . . ) , the functional 

owing inequalities hold: 

 [ Q ν ( ̃  h (θ ) , x )] −1 ‖ L (m n ) ≤ γν( ̃  h (θ )) , γν(h ) − const;

 ν ( ̃  h (θ )) = γν( ̃  h (θ )) 
[ 

e θ − 1 − θ − . . . − θν

ν! 

] 
< 1 . 

Then Problem 1 α has a unique solution v ∗(x, t) and the estimate 

 v ∗‖ ∗ ≤
{ 

γν

(
˜ h ( θ ) 

)[ 

e θ M 

(
˜ h ( θ ) 

)
1 − q ν

(
˜ h ( θ ) 

) θν

ν! 
+ 

ν∑ 

j=1 

θ j 

j! 

] 

+ M 

(
˜ h ( θ ) 

)} 

‖ F ‖

is valid, where M( ̃  h (θ )) = θe θ + (e θ − 1) γν( ̃  h (θ )) 
ν∑ 

j=1 

θ j 

j! 
. 

roof. It follows from the assumptions on the coefficients and t

([0 , ω] , m n ) . From (3.10) we conclude that [ Q ν ( ̃  h (θ ) , x )] −1 ∈ L (C([0

 λ( 0 ) ( x ) ‖ 1 ≤ γν

(
˜ h ( θ ) 

)‖ F ν
(

˜ h ( θ ) , x 
)‖ 1 ≤ γν

(
˜ h ( θ ) 

) ν∑ 

j=1 

θ j 

j! 
‖ F ‖ α. 

For λs (x ) = λ(0) 
s (x ) , the Cauchy problem (3.2), (3.3) has a uniqu

btain 

 ̃

 v ( 0 ) s ( x, t ) ‖ ≤ θe θ‖ F ‖ α + 

(
e θ − 1 

)‖ λ( 0 ) 
s ( x ) ‖ , s ∈ Z , 
5 



A.T. Assanova and R.E. Uteshova Chaos, Solitons and Fractals 143 (2021) 110517 

‖
estimate 

‖  

 ( θ ) 
)‖ F ‖ α. (3.13) 

 systems of pairs (λ(k ) 
s (x ) , ̃  v (k ) 

s (x, [ t])) , s ∈ Z , k = 1 , 2 , . . . . Using again 

t rence between the solutions of the Cauchy problems via the difference 

b

‖
 

x, t ) ∈ �s , s ∈ Z . (3.14) 

‖ (3.15) 

at the sequence (λ(k ) (x ) , ̃  v (k ) (x, [ t])) converges to (λ∗(x ) , ̃  v ∗(x, [ t])) as 

k

‖

‖

function v ∗(x, t) defined as v ∗(x, t) = λ∗
s (x ) + ̃

 v ∗s (x, t) , (x, t) ∈ �s , s ∈ Z , 

i

t Problem 1 α has two solutions, v ∗(x, t) and v ∗∗(x, t) . Then the cor- 

r  t])) are the solutions to the boundary value problem with parameter 

(

‖

‖
t) . Theorem 1 is proved. �

btain the following estimate for the derivative of the solution v ∗(x, t) 

w

‖ (3.16) 

M

 /α(�∗, R 

n ) . 

‖
w

(3.17) 

w  

 (θ ) , x ) . 

 the existence of that to Eq. (3.17) . In fact, the solution λ(x ) = 

( the values of the solution to Problem 1 α at the partition points. 

4 c equations 

holds true. 

T

 function satisfying (3) and (4); 
 ̃

 v ( 0 ) ‖ 2 ≤ M 

(
˜ h ( θ ) 

)‖ F ‖ α. 

Further, according to Algorithm, we find λ(1) (x ) and obtain the 

 λ( 1 ) − λ( 0 ) ‖ 1 ≤ γν

(
˜ h ( θ ) 

)‖ G ν

(
˜ v ( 0 ) , ̃  h ( θ ) , x 

)‖ 1 ≤ γν

(
˜ h ( θ ) 

)θν

ν! 
M 

(
h̃

Proceeding with the iteration process, we find the sequence of

he Gronwall-Bellman inequality, we derive the estimate of the diffe

etween the corresponding parameters: 

 ̃

 v k s ( x, t ) − ˜ v ( k −1 ) 
s ( x, t ) ‖ ≤

( 

e 

t ∫ 
t s −1 

α( τ ) dτ

− 1 

) 

‖ λ( k ) 
s ( x ) − λ( k −1 ) 

s ( x ) ‖ , (

From (3.9) and (3.14) we obtain the estimate 

 λ( k +1 ) − λ( k ) ‖ 1 ≤ q ν
(

˜ h ( θ ) 
)‖ λ( k ) − λ( k −1 ) ‖ 1 , k = 1 , 2 , . . . , . 

It follows from condition (3.11) and inequalities (3.13) –(3.15) th

 → ∞ and the following estimates hold: 

 λ∗ − λ( k ) ( x ) ‖ 1 ≤
[
q ν

(
˜ h ( θ ) 

)]k 

1 − q ν
(

˜ h ( θ ) 
)γν

(
˜ h ( θ ) 

)θν

ν! 
M 

(
˜ h ( θ ) 

)‖ F ‖ α, 

 ̃

 v ∗ − ˜ v ( k ) ‖ 2 ≤
(
e θ − 1 

) [
q ν

(
˜ h ( θ ) 

)]k 

1 − q ν
(

˜ h ( θ ) 
)γν

(
˜ h ( θ ) 

)θν

ν! 
M 

(
˜ h ( θ ) 

)‖ F ‖ α. 

Since (λ∗(x ) , ̃  v ∗(x, [ t])) is a solution to problem (3.2) –(3.5) , the 

s a solution to Problem 1 α and the estimate (3.12) holds true. 

Let us now prove the uniqueness of the solution. Suppose tha

esponding systems of pairs (λ∗(x ) , ̃  v ∗(x, [ t])) and (λ∗∗(x ) , ̃  v ∗∗(x, [

3.2) –(3.5) and 

 ̃

 v ∗ − ˜ v ∗∗‖ 2 ≤
(
e θ − 1 

)‖ λ∗( x ) − λ∗∗( x ) ‖ 1 , 

 λ∗ − λ∗∗‖ 1 ≤ q ν
(

˜ h ( θ ) 
)‖ λ∗ − λ∗∗‖ 1 , q ν

(
˜ h ( θ ) 

)
< 1 . 

Hence λ∗(x ) = λ∗∗(x ) , ̃  v ∗(x, [ t]) = ̃

 v ∗∗(x, [ t]) , or v ∗(x, t) = v ∗∗(x, 

Note that under conditions of Theorem 1 it is not difficult to o

ith respect to t: 

 v ∗t ‖ α ≤ ‖ v ∗‖ ∗ + ‖ F ‖ α ≤
(

˜ M + 1 

)‖ F ‖ α, 

˜ 
 = γν ( ̃ h (θ ))[ e θ M( ̃ h (θ )) 

1 −q ν ( ̃ h (θ )) 

θν

ν! + 

∑ ν
j=1 

θ j 

j! 
] + M( ̃ h (θ )) . 

This estimate shows that v ∗t (x, t) ∈ C ∗, 1 /α(�∗, R 

n ) if F (x, t) ∈ C ∗, 1

Letting ν → ∞ in (3.9) and taking into account 

 G ν

(
˜ v ∗, ̃  h ( θ ) , x 

)‖ 1 ≤ θν

ν! 
‖ ̃

 v ∗( x, [ t ] ) ‖ 2 , 

e get that λ∗(x ) ∈ C([0 , ω] , m n ) satisfies the equation 

1 

θ
Q ∗( ̃  h (θ ) , x ) λ(x ) = −F ∗(A, F , ̃  h (θ ) , x ) , 

here Q ∗( ̃  h (θ ) , x ) = lim 

ν→∞ 

Q ν ( ̃  h (θ ) , x ) , F ∗(A, F , ̃  h (θ ) , x ) = 

1 
θ

lim 

ν→∞ 

F ν ( ̃h

The existence of a solution to Problem 1 α is equivalent to

 . . . , λs (x ) , λs +1 (x ) , . . . ) ′ ∈ C([0 , ω] , m n ) to Eq. (3.17) coincides with 

. Singular boundary value problem for the system of hyperboli

Let us now return to problem (1), (2). The following statement 

heorem 2. Suppose that the following conditions hold: 

(i) ‖ A (x, t) ‖ ≤ α(t) , where α(t) is a continuous and positive on R

(ii) the columns of B (x, t) belong to C ∗(�∗, R 

n ) ; 

(iii) the columns of C(x, t) and f (x, t) belong to C ∗, 1 /α(�∗, R 

n ) ; 

(iv) ψ(t) ∈ C ∗(R , R 

n ) , ˙ ψ (t) ∈ C ∗, 1 /α(R , R 

n ) ; 
(v) the conditions of Theorem 1 are met. 

6 
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bolic Eq. (1) , (2) has a unique classical solution u ∗(x, t) ∈ C ∗(�∗, R 

n ) . 

P

) ′ , j = 1 , 2 , ., n, 

 0 ;

 

′ , j = 1 , 2 , ., n, 

blem (1), (2). Under condition (v), taking into account 1), 2) we can 

c  

n ) whenever F (x, t, w (x, t) , u (x, t)) ∈ C ∗, 1 /α(�∗, R 

n ) . The following esti- 

m

s (4.1) 

s
t

 1 

]{ β0 ‖ w ‖ α + δ0 ‖ u ‖ ∗ + ‖ f‖ α} . (4.2) 

e get 

s

≤  

 �∗
x 

‖ 

f ( ξ , t ) 

α( t ) 
‖ 

}
dξ , (4.3) 

s ) || dξ ≤

≤  sup 
( ξ ,t ) ∈ �∗

x 

‖ 

f ( ξ , t ) 

α( t ) 
‖ 

}
dξ . (4.4) 

st functions u ∗(x, t) ∈ C ∗(�∗, R 

n ) and w 

∗(x, t) ∈ C ∗, 1 /α(�∗, R 

n ) for which 

t

m  ψ‖ ∗, ‖ 

˙ ψ ‖ α

)
. (4.5) 

‖  1 

]
ω 

)
e [ ̃

 M +1 ] ( β0 + δ0 ) ω + 1 (4.6) 

‖ (4.7) 

orithm. 

e find v (0) (x, t) . Then, from the integral relations (2.2) , setting v (x, t) = 

v x, t) . 

p = 1 , 2 , . . . , as solutions to problem (2.1) with w (x, t) = w 

(p−1) (x, t) 

a etting v (x, t) = v (p) (x, t) and v t (x, t) = v (p) 
t (x, t) , we find u (p) (x, t) and 

w

et problem (3.1) . The conditions of Theorem 1 guarantee the existence 

o 3.12) . The unique solvability of problem 1 α in turn ensures convergence 

o mit of the sequence of function triples 

blem (2.1),(2.2) . Its uniqueness can be proved by contradiction. Since 

p tion u ∗(x, t) to problem (1), (2) is unique and belongs to the space 

C

C

 a solution to a boundary value problem for a system of second order 

e  to zero as t → ∓∞ . The coefficient C(x, t) , the right-hand side f (x, t) 

o belong to a space of bounded functions with a weight that is chosen 

t  in question is reduced to an equivalent problem consisting of singular 

b inary differential equations and integral relations. We have established 

c  family of systems of ordinary differential equations with the matrix 

t  a weight. The results and methods of this paper can be extended to 

n cond order nonlinear evolution equations and can be used in the study 

o

Then the singular boundary value problem for the system of hyper

roof. It follows from conditions (i)-(iv) that 

1) B (x, t) = (b i j (x, t)) n 
i, j=1 

, ̃  b j (x, t) = (b 1 j (x, t) , b 2 j (x, t) , . . . , b n j (x, t)

|| ̃  b j || ∗ = sup 

(x,t) ∈ �∗
|| ̃  b j (x, t) || = sup 

(x,t) ∈ �∗
max 
i = 1 ,n 

| b i j (x, t) | ≤ β0 , β0 >

2) C(x, t) = (c i j (x, t)) n 
i, j=1 

, ̃  c j (x, t) = (c 1 j (x, t) , c 2 j (x, t) , . . . , c n j (x, t))

|| ̃  c j || α = sup 

(x,t) ∈ �∗
‖ ̃

 c j (x, t) /α(t) ‖ ≤ δ0 , δ0 > 0 . 

Let us consider problem (2.1), (2.2) which is equivalent to pro

onclude that problem (2.1) has a unique solution v (x, t) ∈ C ∗(�∗, R
ates are valid for v (x, t) and its derivative: 

up 
t∈ R 

‖ v ( x, t ) ‖ ≤ ‖ v ‖ ∗ ≤ ˜ M ‖ F ‖ α ≤ ˜ M { β0 ‖ w ‖ α + δ0 ‖ u ‖ ∗ + ‖ f‖ α} , 

up 
∈ R 

‖ v t ( x, t ) /α( t ) ‖ ≤ ‖ v t ‖ α ≤ ‖ v ‖ ∗ + ‖ F ‖ α ≤
[

˜ M + 1 

]‖ F ‖ α ≤
[

˜ M +

Hence, from integral relations (2.2) and inequalities (4.1), (4.2) w

up 

t∈ R 
|| u (x, t) || ≤ sup 

t∈ R 
|| ψ(t) || + 

∫ x 

0 

sup 

(ξ ,t) ∈ �∗
x 

|| v (ξ , t) || dξ ≤

‖ ψ‖ ∗ + 

˜ M 

∫ x 

0 

{
β0 sup 

( ξ ,t ) ∈ �∗
x 

‖ 

w ( ξ , t ) 

α( t ) 
‖ + δ0 sup 

( ξ ,t ) ∈ �∗
x 

‖ u ( ξ , t ) ‖ + sup
( ξ ,t ) ∈

up 

t∈ R 
|| w (x, t) /α(t) || ≤ sup 

t∈ R 
‖ 

˙ ψ (t) /α(t) ‖ + 

∫ x 

0 

sup 

(ξ ,t) ∈ �∗
x 

|| v t (ξ , t) /α(t

‖ 

˙ ψ ‖ α + 

[
˜ M + 1 

] ∫ x 

0 

{
β0 sup 

( ξ ,t ) ∈ �∗
x 

‖ 

w ( ξ , t ) 

α( t ) 
‖ + δ0 sup 

( ξ ,t ) ∈ �∗
x 

‖ u ( ξ , t ) ‖ +

Here �∗
x = [0 , x ] × (−∞ , + ∞ ) , x ∈ [0 , ω] . 

The Volterra integral inequalities (4.3), (4.4) imply that there exi

he following inequality holds: 

ax ( ‖ u 

∗‖ ∗, ‖ w 

∗‖ α) ≤
(
1 + 

[
˜ M + 1 

]
ω 

)
e [ ̃

 M +1 ] ( β0 + δ0 ) ω max 
(‖ f‖ α, ‖

From (4.1), (4.3) and (4.5) we have 

 v ∗‖ ∗ ≤ ˜ M · K · max 
(‖ f‖ α, ‖ ψ‖ ∗, ‖ 

˙ ψ ‖ α

)
, K = ( β0 + δ0 ) 

(
1 + 

[
˜ M +

 v ∗t ‖ α ≤
[

˜ M + 1 

]
· K · max 

(‖ f‖ α, ‖ ψ‖ ∗, ‖ 

˙ ψ ‖ α

)
. 

A solution to problem (1), (2) can be found by the following alg

By solving problem (2.1) for w (x, t) = 

˙ ψ (t ) and u (x, t ) = ψ(t) , w

 

(0) (x, t) and v t (x, t) = v (0) 
t (x, t) , we determine u (0) (x, t) and w 

(0) (

If u (p−1) (x, t) and w 

(p−1) (x, t) are known, we find v (p) (x, t) , 

nd u (x, t) = u (p−1) (x, t) . Then, from the integral relations (2.2) , s

 

(p) (x, t) . 

In each step of the algorithm, for fixed w (x, t) and u (x, t) , we g

f a unique solution to Problem 1 α and the fulfilment of estimate (

f the algorithm. The triple { v ∗(x, t) , u ∗(x, t) , w 

∗(x, t) } , being the li

{ v (p) (x, t) , u (p) (x, t) , w 

(p) (x, t) } as p → ∞ , is a solution to Pro

roblems (2.1), (2.2) and (1), (2) are equivalent, the classical solu

 ∗(�∗, R 

n ) . Theorem 2 is proved. �

onclusion 

In this paper, we have obtained conditions for the existence of

volution equations of hyperbolic type with matrix A (x, t) tending

f the system, and the derivative ˙ ψ (t) of the boundary function 

aking into account the behavior of A (x, t) as t → ∓∞ . The problem

oundary value problems for a family of systems of first order ord

onditions for the existence of a bounded in a strip solution to a

ending to zero as t → ∓∞ and the right-hand side bounded with

onlinear evolution equations of hyperbolic type and families of se

f application problems. 
7 
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