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Network science

Networks are used for modelling broad variety of complex

systems:
From macromolecules to WWW, social, economic, political

and ecological systems.

Networks can be modelled in terms of metric graphs.

Graph is characterized by its topology, a connection rule for
graph bonds.



What is quantum Network?

No standard definition of quantum network.
Depends on the topic where network appears

Our definition:

Any  Dbranched  structure  (network) where the
particles/waves/phenomena are described in terms of
quantum mechanical wave equations




Quantum Networks in Optics:
Microwave Networks

Wave transport in optical fibers is described by Helmholtz
equation: )

O . Hul et al Phys. Rev. E 69 056205 (2004)



Quantum networks in condensed
matter: Branched carbon nanotube

M. Terrones, F. Banhart, N. Grobert, J. C. Charlier, H. Terrones and P. M,
Ajayan, Physical Review Letters 89, 75505, 2002.



Quantum networks in condensed
matter: Majorana wire networks
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Quantum networks in condensed
matter: Branched graphene
nanoribbon
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Quantum networks in polymers:
Exciton dynamics
in conducting polymers
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Abstract

snyfurther diswibutionot WV present a stack model for breaking down the complexity of entanglement-based quantum networks.
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More specifically, we focus on the structures and architectures of quantum networks and not on
concrete physical implementations of network elements. We construct the quantum network stackina
hierarchical manner comprising several layers, similar to the classical network stack, and identify
quantum networking devices operating on each of these layers. The layers responsibilities range from
establishing point-to- point connectivity, over intra-network graph state generation, to inter-network
routing of entanglement. In addition we propose several protocols operating on these layers. In
particular, we extend the existing intra-network protocols for generating arbitrary graph states to ensure
reliability inside a quantum network, where here reliability refers to the capability to compensate for
devices failures. Furthermore, we propose a routing protocol for quantum routers which enables the
generation of arbitrary graph states across network boundaries. This protocol, in correspondence with
dassical routing protocols, can compensate dynamically for failures of routers, or even complete
networks, by simply re-routing the given entanglement over alternative paths. We also consider how to
connect quantum routers in a hierarchical manner to reduce complexity, as well as reliability issues
arising in connecting these quantum networking devices.




Quantum networks in quantum

information

The quantum internet

H. 1. Kimble'

Quantum networks provide opportunities and challenges across arange of intellectual and technical
frontiers, including quantum computation, communic ation and metrology. The realization of quantum
networks composed of many nodes and channeks requires new scientific capabilities for generating and
characterizing quantum coherence and entanglement. Fund amental to this endeavour are quantum
interconnects, which convert quantum states from one physical system tothose of another in a reversible
manner. Such quantum connectivity in networks can be achieved by the optical interactions of single
phatons and atoms, allowing the distribution of entanglement ac ross the network and the teleportation

of guantum states between nodes.

In the past two decades, 2 broad range of fundamenta] discoveries have
bieen made in the feld of quantum information sclence, from & quantum
algorithm that places public-key cryptography at risk to 2 protocol for
the teleportation of guantum states’. This snion of quantim mechan-
ics and Information sclence has allowsd great advances in the undar-
standing of the quantum world and In the ability to contral coherently
individis] quantum systems”. Unique ways in which quantum systems
process and distribute Information have been Wdentified, and powerfisl
new perspectives for understanding the complexity and subtletles of
quantum dynamical phenomena have eme

In the broad context of quantum Information sclence, quantum
netwarks have an Impaortant role, both for the formal anatysts and the
physiczl implementation of quantum computing. communication
and metrology” ®. A nottonal quantum network basad on proposaks in
refs 4, 6 1s shown In Fig. 1a. Quantum information 1s generated, pro-
cessed and stored locally In quantum nodes. Thess nodes are Iinked
by quantum channels, which transport guantiem states from site to
sltewith high fidelsty and distribute entanglement across the entire
network. As an extension of this sdea, a ‘quantum internet’ can be envis-
aged; with only moderate processing czpabalittes, such zn internet could
accomplish tasks that are Impossible In the realm of classical physics,
inclding the distribustion of ‘quantum software™.

Apart from the advantages that might be geined from 2 particular
algorithm, there is an Impartant advantage In uslng guantum connec-
trvity, as oppasad to classlcal connectivity, between nodes. A network.
of quantum nodes that 1s linked by classical channels and comprises &
nodes each with m quantum bits { qublis) has 3 state space of dimension
k2", whereas a fully quantum network has an exponentially larger state
space, 7™ Quantum connectivity also provides a potenttzlly powerful
means to overcome skze-scaling and error-correlation problems that
would Hmit the size of machines for quanium processing”. Atany siage
in the development of quantum technologes, there will be 2 largest slze
attalnable for the state space of individual quantum processing untts,
and it will be possible to surpass this stre by Unking such uniis together
imto 2 fuslly quantum network.

A different perspective of 2 quantum network s to view the nodes
a5 companents of a physicz] system that interact by way of the quan-
tum channels. In this case, the underlying physical processes wsed
fior quantum network protocods are adapted to smulate the evolution of
quantum many-body systems®. For example, stoms that are localized
at separate nodes can have effective spin-spin interactions catalysed by

single-photon pulses that travel slong the channels between the nodes™.
This ‘quantum wirtng’ of the netwark allows 2 wide range for the effec-
tive hamitiondan and for the topology of the resultant Tattice” Moreover,
from this perspective, the extension of entanglement across quantum
networks can be relatad to the classica] problem of percolztion”’.

Thess exciting opporiunities provide the motivation to examine
research related to the physical processes for translating the abstract
Ilustmation in Fig. 13 into reality. Such conslderations are timely becaise
scleniific capebilities are now passing the threshold from a learning phass
with Individual systems and advancing info 2 domaln of rudimentary
functiomaltty for guantum nodes connected by quantum chanmels.

In this revlew, I convey some baslc princtples for the physlcal imp-
lementation of guantum networks, with the 2im of stimulating the
Invalvement of a larger community In this endesvour, Including In
systems- lewel studles. 1 focus on current efforts to harness optical pro-
cesses at the level of single photons and atoms for the transportation of
quantum states rellzbly across complex quantum networks.

Two Impartant ressarch areas are strong coupling of single photons
and atoms In the setting of cavity quantum electrodynamics (QED) and
guantum Information processing with atomic ensembles", for whach
cructal elements are long-lved quantum memaorles provided by the
atomlc systam and efficient, quantum interfaces between lght and
matier. Mamny other physical systems are also belng Iovestigated and are
discussed alsewhere (ref. 2 2nd websites for the Quantum Computa-
tion Roadmap (hitpeiiqlstlanl goviqoomp_map.shtml), the SCALA Int-
egrated Prodect (hittpe www.scala-jpoong/public) and Qubit Applications
[hittpewowre qubttapplicatlons com]).

A quantum interface between light and matter

The maln scienttfic challenge In the quest to distribute quantum states
aCross 3 quantum network 1s to attaln coberent control over the inter-
actions of 1ight and matter at the single-photon level. In contrast to
atoms and electrons, which have relatively Large long-range Interac-
Homs for thelr spin and charge degress of freedom, individus] photons
typlcally have Interactlon cross-sections that are orders of magnitude
too small for non-trivial dynamics when coupled to single dagrees of
freadom for a matertal system.

The optical physics community began to address this lsse in the
1990, with the development of theoretical protocols for the coherent
transfier of guantum states between atoms and photons in the setting of
cavity QED™*"". Other important advances have been made in the past
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Metric graphs

A graph with the bonds which can be assigned length,
o< lb: <D

Is called metric graph



Graphs and their topology

The topology of the graph, that is, the way the vertices
and bonds are connected Is given in terms of the VxV
connectivity matrix C;; (sometimes referred to as the

adjacency matrix) which is defined as:

1 if 7,7 are connected S
Cij = Chi = { 0 otherwise } y b= 1V



Constructing quantum graphs
from finite interval (wires)

Metric graph as a collection of interval glues to each other
according to connectivity matrix




Constructing quantum graphs
from finite interval (wires)

Metric graph as a collection of interval glues to each other
according to connectivity matrix




Evolution equation on graphs

where H is the Shrodinger or Dirac operator



Wave equation on graphs: Wave
function

Wave function ¥ 1s a B-component vector

(qul (xbl)" b, (‘xbz )’ s P (‘be))T




Wave equation on graphs:
Vertex Boundary conditions

\
N\



Differential operators on graphs

For given self-adjoint differential operator on graph
D skew-Hermitian form can be constructed as

Q(p,¢) = (D, p) — (@, Dp)

V.Kostrykin, R.Schrader, J. Phys. A. 32 595 (1999)



Boundary conditions

Ay (0)+By'(0)=0

where A and B are two nXn matrices

V.Kostrykin, R.Schrader, J. Phys. A: Math. Gen. 32 (1999) 595-630.



The Schrodinger equation on
graphs: Wave function

For each bond b = (i, ) a coordinate x;; which indicates the position along
the bond is assigned. The variable x;; takes the value 0 at the vertex i and
the value L;; = L;; at the vertex ] while x;; is zero at | and L;; at i. We have
thus defined the length matrix L with matrix elements different from zero,

whenever C;;#0 and L;; = L;;forb=1, ...,B.

The wavefunction ¥ is a B-component vector and can be written as
1];( e ];[J . 1];( . T
( by ('*1’5?1 ), bo ('*1’152 ), s bp (*1’ bp )

B

i1 consists of B different bonds

where the set {bi }

T. Kottos and U. Smilansky, Ann. Phys. 274, 76 (1999).



The Schrodinger equation on
graphs: Boundary Conditions

The wave function must satisfy boundary conditions at the vertices, which ensure
continuity (unigueness) and current conservation. Foreveryi=1, ..., V.

e Continuity:

¥ () =o W,(x|, =¢ Foral i<jand C %0

e Current conservation
Sc,. v, (x) .yc,. LPi,j(x)

< X=L, ; > x=0

= A4,

The parameters A, are free parameters which determine the type of the
boundary conditions.

The special case of zero A's, corresponds to Neumann boundary conditions.
Dirichlet boundary conditions are introduced when all the A, = «.

T. Kottos and U. Smilansky, Ann. Phys. 274, 76 (1999).



The Schrodinger equation on
graphs: Solutions

At any bond b = (i, j) the component b can be written in terms of its values on
the vertices i and | as

e ™ (goi sin[k(Li,j —x)]+goj sin kx)Ci,j, 1 < J.

The current conservation condition leads to

— Z Sin (kll_J )(_ P + @ COS(kl—i,j ))

_]<I

Vi,

-+ % sin (kI_J )(_ P Cos(kl—i,j )"‘ P; ): A5,



The Schrodinger equation on
graphs: Eigenvalues

Spectral equation

det(hi,j (k)): 0

where

(_ZCi,m COt(kLi,m)_%’ | = J

h' i = m==i

C,,;(sin(kL, ), '

K



Quantum star graph

A graphs of the most simplest topology is so-called star-graph. It consist of
three or more bonds connected at the single vertex which can be called central
vertex. Other ones are called edge vertices. The eigenvalue problem for a star
graph with N bonds is given by the following Schrodinger equation:

d? |
—lom ) =k, j=1.N.

We assign for each bond | a coordinate yj which indicates the position along the
bond and takes the value 0 at the vertex V and the value Ij at the edge vertex.

The boundary conditions for the star graph are N N N_2
(D1ly=0 = P2ly=0 == dyly=o,
¢1|_’y=l1 = ¢2|y=l2 == ¢N|y=lN = 0; :
| !
d =0
dy Bily=y =0

\]:1

J.P.Keating, Contemp. Math., 415, 191 (2006)



Quantum star graph

The eigenvalues can be found by solving the following equation

N

z cot(klj) =0

j=1

where corresponding eigenfunctions are given as

B
M)y — :
qun (y) = = an] sin kn(l] —y)

with normalization coefficient

2
.lj—sinanlj
\ /o sin? ky, |

B, =




Quantum transport

Probability current

*

W

B O S L SRR
]k(xit)_z k(x; ) dx k(x' ) dx

P, t) = ) e )

n




Quantum transport

Conductivity

00)

1 .
700 = | dre ([ (6,00, G, D))

0

(Uk (.X', O);]k (X, T)])
Lk

=f dx|Ji (x, 0)] (x, T) — Ji (x, 0)]) (x, T)]

0



PT-symmetric quantum mechanics

Since from the beginning of guantum physics people
believed that to have real energy spectrum Hamiltonian
operator should be Hermitian (self-adjoint). This fact was
considered as necessary and enough condition for the
realness of the spectrum. However such faith was broken in
1998 by Bender and Boettcher.



PT-symmetric quantum mechanics

In 1998, Bender and Boettcher [Phys. Rev. Lett. 80 5243
(1998)] showed that quantum systems with a non-Hermitian
Hamiltonian can have a set of eigenstates with real
eigenvalues (a real spectrum).

In other words, they found that the Hermiticity of the
Hamiltonian is not a necessary condition for the realness of
its eigenvalues, and new quantum mechanics can be
constructed based on such Hamiltonians.



H = p* + J:E{':i;r:]"" (¢ Teal)

19t

-1 * 0 | l | Z | 3
Region of broken PT phase Region of unbroken

PT Symmetry transition PT Symmetry
C. Bender and S. Boettcher, PRL 80, 5243 (1998)



Examples of PT-symmetric
systems

H = p? + x*K(ix)¢

L=5 09 +5mP¢2 + gp2Wd)° (e 20)

1 | N S _
L=2(0¢)5ipdy + -5 (PP + S [S(P)]* =

1 1 - 1 _ 1
=5(00)* + S ihay +5 g1+ ) (iP) PP — - g*(ig)**



PT-Symmetric inner product

(f,9) = f dx[PTf(0)]g(x)

j dxg () [PTHf (x)] = ] dxHg () [PTf ()]



Introducing of PT-Symmetry
in a quantum system

Similarly to that In Hermitian guantum
mechanics, PT-symmetry in a quantum system
can be Introduced either via the boundary
conditions, or complex PT-symmetric
potential.




PT-symmetry in optics

Maxwell's equations reduce to the scalar Helmholtz equation

<6_2 + 0—2 + (2)2 e(x, z)) E(x,z) =0

0x2 0z2 C

It formally coincides with the stationary Schrodinger equation

92 92 2om(V(x, z) — Ep)
( ) k(X,Z)—

ot a2V = Vi, z) =0



PT-symmetry in optics

Optical analog of the potential energy in gquantum mechanics is the
permittivity in optics: PT-symmetry condition for the optical system is
defined as the condition imposed on the permittivity of the medium

Re e(w,x,z) = Re (w,—x,—2)
Imes(w,x,z) = —Im (w, —x,—2)

The stationary Schrodinger equation does not include the time dependence,
and therefore the time reversal operation T is equivalent conjugation K.
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Observation of parity-time symmetry in optics

Christian E. Riiter!, Konstantinos G. Makris?, Ramy ElI-Ganainy?, Demetrios N. Christodoulides?,

Mordechai Segev® and Detlef Kip'™*

One of the fundamental axioms of guantum mechanics is
associated with the Hermiticity of physical observables'. In
the case of the Hamiltonian operator, this requirement not
only implies real eigenenergies but also guarantees probability
conservation. Interestingly, a wide class of non-Hermitian
Hamiltonians can still show entirely real spectra. Among these
are Hamiltonians respecting parity-time (PT) symmetry®’.
Even though the Hermiticity of quantum observables was never
in doubt, such concepts have motivated discussions on several
fronts in physics, including quantum field theories®, non-
Hermitian Anderson models® and open quantum systems'™",
to mention a few. Although the impact of PT symmetry in
these fields is still debated, it has been recently realized that
optics can provide a fertile ground where PT+elated notions
can be implemented and experimentally investigated™-'5, In
this letter we report the first observation of the behaviour
of a PT optical coupled system that judiciously invelves a
complex index potential. We observe both spontaneocus PT
symmetry breaking and power oscillations violating left-right
symmetry. Our results may pave the way towards a new
class of PT-synthetic materials with intriguing and unexpected
properties that rely on non-reciprocal light propagation and
tailored transverse energy flow.

192

(e = £y), the spectrum ceases to be real and starts to involve
imaginary eigenvalues. This signifies the onset of a spontaneous PT
symmetry-breaking, that is, a ‘phase transition’ from the exact to
broken-PT phase™",

In optics, several physical processes are known to obey equations
that are formally equivalent to that of Schrédinger in quantum
mechanics. Spatial diffraction and temporal dispersion are perhaps
the most prominent examples. In this work we focus our attention
on the spatial domain, for example optical beam propagation
in PT-symmetric complex potentials. In fact, such PT ‘optical
potentials’ can be realized through a judicious inclusion of
index guiding and gain/loss regions™'*~'*, Given that the complex
refractive-index distribution nix ) = ng(x)+ in;(x ) plays the role of
an optical potential, we can then design a PT-symmetric system by
satistying the conditions np(x) =ng(—x) and ny(x) = —n{—x).

In other words, the refractive-index profile must be an even
tunction of position x whereas the gain/loss distribution should be
odd. Under these conditions, the electric-field envelope E of the
optical beam is governed by the paraxial equation of diffraction'*:

dE 1 #’E
f— 4+ —— Lk lnplx)+inx)|E=0
e Ek ng | LR I .']

MNATURE PHYSICS | WVOL 6 | MARCH 2010 | www.naturecom/naturephyeice

& 2010 Macmillan Publishers Limited. All rights reserved.



PT-symmetric quantum graph

Skew-Hermitian product on graph, which is defined for arbitrary
differential operator, H as

.Q(l/), ¢) = (Hl/)' ¢> T (l/)' H¢>

do* .(0)
A0, ¢) = = Z[cp (0) "’1()—1/),-(0) . ]+

=0

1/;]( ) d¢’ j(L)]
+Z[¢ (W)= (1) —

X



Boundary conditions |

1(0) = 12(0) = ¥5(0),

O 0, 03 0
()x .l':LI dx .Y:L___“J ()x ,\‘:L'}

V(L) =0,7j=1,2,3.

Boundary conditions Il

0
Ox )
U1 (Ly) + (L) + Y3(L3) = 0,
Yy
ox |y,

D. U. Matrasulov, K. K. Sabirov, J. R. Yusupov, J. Phys. A 52 155302 (2019)

x=0 Ox

x=0 dX

—0, j=1,2,3




PT-symmetric quantum graph
Secular equation for finding energy spectrum
eikLl(l _ eZikLz) (1 _ eZikLg,) 4+ eikLz(l _ eZikLl) (1 _ eZikL3)+

_I_eikLg(l _ eZikLl) (1 _ eZikLz) =0

sin kn(Lj — x)
sinky L;

l:bj(xl kn) =B

D. U. Matrasulov, K. K. Sabirov, J. R. Yusupov, J. Phys. A 52 155302 (2019)



PT-symmetric quantum graphs

D. U. Matrasulov, K. K. Sabirov, J. R. Yusupov, J. Phys. A 52 155302 (2019)



Breaking of Kirchhoff rule

Total current at the vertex (x = 0)

](Or t) :]1(01 t) +]2(O, t) +]3(O, t)

@0 = ) e ™ty en)

D. U. Matrasulov, K. K. Sabirov, J. R. Yusupov, J. Phys. A 52 155302 (2019)



Breaking of Kirchhoff’s rule




PT-symmetric quantum graphs

2
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D. U. Matrasulov, K. K. Sabirov, J. R. Yusupov, J. Phys. A 52 155302 (2019)



Experimental realization

S
. ‘06‘
N\

‘)&_}d&\{

)

Absorbing

optical material
Linear

optical fiber

D. U. Matrasulov, K. K. Sabirov, J. R. Yusupov, J. Phys. A 52 155302 (2019)



Reflectionless wave motion on graphs

J.M. Harrison, U. Smilansky, B. Winn, J. Phys. A, Math.
Gen. 40 (2007) 14181.

P. Joly, M. Kachanovska, A. Semin, hal-01801394, 2018.

K. Naimark, M. Solomyak, Proc. Lond. Math. Soc. 80
(2000) 690.

P. Exner, J. Lipovsky, J. Math. Phys. 51 (2010) 122107.

P. Kurasov, R. Ogik, A. Rauf, Opusc. Math. 34 (2014)
483.

T. Cheon, Int. J. Adv. Syst. Measur. 5 (2012) 34.
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Material Structures”, Sochi,
Caohriiarns 1721 2090



Transparent boundary conditions

» For a given finite domain, Q, the TBC sare imposed In
such a'way that the solution of a PDE 1n Q
corresponds to that in the whole space, i.e., the
wave/particle moving inside/outside the domain does

not ‘see’ the boundary of the domain.

» Then such boundary conditions provide absence of the
back scattering at the given point (or domain
boundary) makes it transparent.



Transparent quantum graphs:
Reflectionless wave propagation in

quantum networks

Absence of backscattering at the graph vertices makes the
graph transparent. Mathematically, such transparency can be

provided by imposing so-called reflectionless boundary
conditions at the graph vertex.



Transparent boundary conditions

The general procedure for constructing transparent boundary
conditions on a real line:

1. Split the original PDE evolution problem into coupled equations: the
interior and exterior problems.

2. Apply a Laplace transformation to exterior problems on Qext.

3. Solve (explicitly, numerically) the ordinary differential equations in
the spatial unknownx.

4. Allow only “outgoing” waves by selecting the decaying solution
aSX—=£00.

5. Match Dirichlet and Neumann values at the artificial boundary.
6. Apply (explicitly, numerically) the inverse Laplace transformation



Transparent quantum networks:

Yy A |
left exterior problem interior problem |
I
(explicitly solvable) | right
I
VY (X,1) i exterior
output: v _(0,t) — i problem
I
|
I
wI |
I
I - .
0 L

Ficure 1. Schrodinger equation: Construction idea for transparent
boundary conditions

M. Ehrhardt and A. Arnold, Discrete Transparent Boundary Conditions for the Schrodinger
Equation, Rivista di Mathematica della Universita di Parma, Volume 6, Number 4 (2001), 57-108.



Transparent boundary condition

Interior problem:

0¥ = -2 W+ V(xOY, 0<x<Lt>0

Y(x,0) = ¥ (x)
d,W(0,t) = (T,'W)(0,t)
2, V(L t) = (T \Y)(L,¢t)

Ty 1, denote the Dirichlet-to-Neumann maps at the boundaries.



Transparent boundary conditions

Ty 1, are obtained by solving the two exterior problems:

[0;V = —%63v+ Viv, x>L t>0

v(x,0) =0

v(L, t) = &(t), t >0,
®(0)=0

v(oo,t) =0,

(T @) (t) = 0xv(L, 1),

and analogously for T.



Transparent boundary conditions

An inverse Laplace transformation yields the right TBC at Sx = LS:

P =Lt) = 7I.e e dt \/tT T
0

Similarly, the left TBCat x = 0 is obtained as

2.%( 0,0 2 -z d lP(L‘.f)
WY(x = = — ’—e
T 1ft_




Transparent quantum networks:

Time-dependent Schrodinger equation for star graph with 3 bonds (in units A =
m=1)

1
0¥y = =2 03W,,  b=123

The coordinates assigned to bond B isx € (—,0) and B_(1,2) arex € (0, o).

B3

BI
BS



Transparent quantum networks:

Interior problem for SB_185:
i0,¥) = —>02 W, x<0,t>0
¥, (x,0) = P/ (x)

0x¥1(0,t) = (T, ¥1)(0,t)



Transparent quantum networks

Exterior problems for SB_{2,3}S:
i0;Wy3=—502W,3 x>0, t>0
¥3(x,0) =0

¥3(0,8) = Pp5(t), t>0, Py3(0)=0

(T4 Py 3)(t) = 0¥, 3(0,0)

J. R. Yusupov, K. K. Sabirov, M. Ehrhardt, and D. U. Matrasulov, Phys. Lett. A 383, 2382 (2019).



Transparent quantum networks

The Laplace transformed current conservation (at x = 0) takes the
form

0@ _alafp +a10fp
ox ' a,0x % azdx °
1
= —V-2is a1< )
a; a3

Using the inverse transform we have

t
5, ‘g O ¢ 4 2 —l% d Lpl(O,T)
Ox 1(x = ) =4 - dt ’_t—TT
0

where 4; = a?(a;? + az?).

J. R. Yusupov, K. K. Sabirov, M. Ehrhardt, and D. U. Matrasulov, Phys. Lett. A 383, 2382 (2019).



Transparent quantum networks

Continuity condition:
a,'¥1(0,t) = ay¥,(0,t) = a3'¥3(0,t)

Current conservation condition:
1 1 1
—0,¥Y1(x=0,t) =—0,¥(x=0,t) +—09,¥Y3;(x =0,t)
aq a; as

Condition for transparency the continuity and current conservation:

1 1 1

2 2 2
a; a; a3

J. R. Yusupov, K. K. Sabirov, M. Ehrhardt, and D. U. Matrasulov, Phys. Lett. A 383, 2382 (2019).



RELATIVISTIC QUASIPARTICLES IN TRANSPARENT
QUANTUM GRAPHS

Dirac equation (A = ¢ = 1):

lat¢] = —I ax)(] + mqu,
lat)(] = —I ax¢] —my;.

Vertex boundary conditions: Weight continuity

a1$1(0,t) = a,¢2(0,t) = azp3(0,t),

Vertex boundary conditions: Kirchoff rules
- 0,t) = = 0,t) + = 0,t
0(1)(1( ) )_CZZXZ( ’ ) C(3X3( ) )

J. R. Yusupov, K. K. Sabirov, Q.U. Asadov, M. Ehrhardt, and DM Phys.Rev. E, 101, 062208 (2020)



RELATIVISTIC QUASIPARTICLES IN TRANSPARENT QUANTUM

GRAPHS

0 (0,8) = A5 [ Io(m(t — 1)1 (0, T)dT +
im fot Io(m(t — 1)) $1(0,7)d7],

where 4; = a?(a;* + a3?) and I,(z) — Bessel functions

0 0.5 0.8616 1 1.5

tt_l

J. R. Yusupov, K. K. Sabirov, Q.U. Asadov, M. Ehrhardt, and DM Phys.Rev. E, 101, 062208 (202
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Dyamics ofexcitons in branched
conducting polymers

Model: metric graph based approach

Branched polymer — Metric graph

A >
N \ / O ‘ 1
o oM 06— OH O— g ‘o-_q,/'- on e O
. 2 u;:k(.l"&: ‘oM b3
Qw0



Transport of excitons:
Transmission through the branching point
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J.R.Yusupov, Kh.Sh.Matyokubov, K.K.Sabirov, DM, Chem. Phys., 537, 110861 (2020)



Transport of excitons:
Transmission through the branching point
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Exciton’s reflection coefficient at the polymer branched point.



Further progress made in modeling
of transparent networks

K. K. Sabirov, J. R. Yusupov, M. M. Aripov, M. Ehrhardt, and D. U. Matrasulov.
Reflectionless propagation of Manakov solitons on a line: A model based on the
concept of transparent boundary conditions. Phys. Rev. E 103, 043305 (2021)
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In branched conducting polymers: Quantum graphs based approach.. Chem. Phys.,
537,110861 (2020)
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2020
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Summary

Basic theory for particle and wave dynamics in quantum
networks Is presented.

Theory of PT-symmetric graphs:
Breaking Hermitticity In quantum graphs
Experimental realization in microwave fibers

Transparent guantum graphs: Reflectionless transmission of
waves through the vertices.




Outlook

Quantum teleportation on networks
Entangled quantum networks
Qubits in networks

Relativistic quantum graphs: Weyl and Majorana fermions
In networks

Transparent microwave networks
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