Journal Papers

  1. S. Rakhmanov, C. Trunk, D. Matrasulov,
    Quantum particle under dynamical confinement: From quantum Fermi acceleration to high harmonic generation
    ↗ arXiv:2309.15389 

  2. Serdyuk, A.S., Sokolenko,
    I.V. Asymptotic estimates for the widths of classes of functions of high smoothness
    Carpathian Mathematical Publications, https://doi.org/10.15330/cmp.15.1.246-259
  3. Serdyuk, A.S., Sokolenko,
    I.V. Asymptotic Estimates for the Best Uniform Approximations of Classes of Convolution of Periodic Functions of High Smoothness
    J. Math. Sci. 252, 526–540 (2021). https://doi.org/10.1007/s10958-020-05178-1
  4. Serdyuk, A.S., Stepanyuk, T.A.,
    Asymptotically best possible Lebesque-type inequalities for the Fourier sums on sets of generalized Poisson integrals
    FILOMAT  (2020)  34:14 4697–4707
    https://doi.org/10.2298/FIL2014697S
  5. Abdullayev, F.; Chaichenko, S.; Shidlich,
    A. Direct and inverse approximation theorems of functions in the MusielakOrlicz type spaces. 
    Mathematical Inequalities & Applications. – 2021. – 24, №2. – pp. 323–336. DOI: ↗https://dx.doi.org/10.7153/mia-2021-24-23 (see also ↗https://doi.org/10.48550/arXiv.2004.09807)
  6. Prestin, V. Savchuk, A. Shidlich,
    Approximation on hexagonal domains by Taylor-Abel-Poisson means
    to appear in J. Math. Anal. Appl.
    ↗ https://arxiv.org/abs/2210.16793 DOI  , ↗ https://doi.org/10.1016/j.jmaa.2023.127536
  7. Assanova A.T., Bakirova E.A, and Uteshova R.E.
    Novel approach for solving multipoint boundary value problem for integro-differential equation
    Kazakh Mathematical Journal 20(1) 2020, 103-124. The full text is available on the  journal website.
  8. Fikret A. Aliev, N.A. Aliev , N.I. Velieva, N.A. Safarova.
    🗎 Larin Parameterization to Solve the Problem of Analytical Construction of the Optimal Regulator of Oscillatory Systems with Liquid Dampers 
    J. Appl. Comput. Mech., 6(SI) (2020) pp.1426-1430, ↗DOI: /10.22055/JACM.2020.34950.2548.
    The full text is available on the ↗ journal website.
  9. Aliev, F.A.,  Larin , V.B.,  Mammadova, G.H.
    🗎 Comments on “On a transformation of the *-congruence Sylvester equation for the least squares optimization” 
    by Satake, Y., Sogabe, T., Kemmochi, T., Zhang, S.L., TWMS J. Pure Appl. Math., 12(2), pp. 289-290. 2021 The full text is available on the ↗ journal website
  10. A. Abildayeva, A. Assanova, A. Imanchiyev,  🗎 A Multi-Point Problem for a system of Differential Equations with Piecewise-Constant a Argument of generalized Type as a Neural Network Model.
    EURASIAN MATHEMATICAL JOURNAL. Volume 13, Number 2 (2022), 08 – 17.   ↗ https://doi.org/10.32523/2077-9879-2022-13-2-08-17
  11. Aliev Fikret , Aliyev N.A. , Hajiyeva N.S., , Mahmudov N.I
    🗎 Some Mathematical Problems and their Solutions for the Oscillating Systems with Liquid Dampers: A Review.
    Appl. Comput. Math., V.20, N.3, 2021, pp.339-365.
  12. Valerii Los, Vladimir Mikhailets, and Aleksandr Murach
    Parabolic problems in generalized Sobolev spaces
    Comm. Pure Appl. Anal., 2021, 20(10): 3589-3620. ↗https://doi.org./10.3934/cpaa.2021123 
  13. Anna Anop, Robert Denk and Aleksandr Murach
    Elliptic problems with rough boundary data in generalized Sobolev spaces
    Comm. Pure Appl. Anal., 2021, 20(2): 697-735, ↗https://doi.org/10.3934/cpaa.2020286
  14. Andrii Goriunov
    Multi-interval Sturm-Liouville problems with distributional coefficients
    Methods Funct. Anal. Topology 26 (2020), no. 2, 103-110. doi: 10.31392/MFAT-npu26_2.2020.02
  15. Iryna Chepurukhina, Aleksandr Murach
    Elliptic problems with unknowns on the boundary and irregular boundary data
    Methods Funct. Anal. Topology 26 (2020), no. 2, 91-102.
    doi: 10.48550/arXiv.2006.08379
  16. P. A. Cojuhari, L. P. Nizhnik
    Scattering problem for Dirac system with nonlocal potentials
    Methods Funct. Anal. Topology 25 (2019), no. 3, 211-218.
  17. A. A. Boichuk, S. M. Chuiko
    On the approximate solution of weakly nonlinear boundary-value problems by the Newton – Kantorovich method
    Nonlinear Oscillations, 23 (2020), no. 3,  321-331.
    doi/10.1007/s10958-022-05748-5
  18. Anar T. Assanova a , RozaE. Uteshova
    🗎 A singular boundary value problem for evolution equations of hyperbolic type
    published in Chaos, Solitons and Fractals in 2021
    https://doi.org/10.1016/j.chaos.2020.110517 
  19. V. Mikhailets, A. Murach, T. Zinchenko,
    An extended Hilbert scale and its applications↗arXiv:2102.08089,. 43 pp. (Submitted) doi: /10.48550/arXiv.2102.08089
  20. A. Boichuk, S. M. Chuiko,
    On the approximate solution of weakly nonlinear boundary-value problems by the Newton – Kantorovich method, 
    J Math Sci 261, 228–240 (2022)
    https://doi.org/10.1007/s10958-022-05748-5
  21. Oleksandr Boichuk and Victor Feruk,
    Boundary-value problems for weakly singular integral equations,
    Discrete and Continuous Dynamical Systems – Series B, 2022, Volume 27, Issue 3: 1379-1395. ↗ https://doi.org/10.3934/dcdsb.2021094
  22. Valerii Los, Vladimir Mikhailets, and Aleksandr Murach,
    Parabolic problems in generalized Sobolev spaces,
    Comm. Pure Appl. Anal., 2021, 20(10): 3589-3620.  https://doi.org/10.3934/cpaa.2021123
  23. Anna Anop, Robert Denk and Aleksandr Murach,
    Elliptic problems with rough boundary data in generalized Sobolev spaces,
    Comm. Pure Appl. Anal., 2021, 20(2): 697-735,  https://doi.org/10.3934/cpaa.2020286
  24. A. Anop, I. Chepurukhina, A. Murach,
    Elliptic problems with additional unknowns in boundary conditions and generalized Sobolev spaces,
    Axioms 10 (2021), article no. 292, 23 pp. https://doi.org/10.3390/axioms10040292
  25. I.S. Chepurukhina, A.A. Murach,
    Elliptic problems in Besov and Sobolev-Triebel-Lizorkin spaces,
    Dopov. Nac. Akad. Nauk Ukr 2021, no. 6, 3-11. ↗https://doi.org/10.48550/arXiv.2108.08741
  26. D. S. Bihun, O. O. Pokutnyi, E. V. Panasenko.
    Autonomous nonlinear boundary-value problems for the Lyapunov equation in the Hilbert space.
    Ukr Math J 73 (7), 1009–1022 (2021).  ↗https://doi.org/10.1007/s11253-021-01973-4
  27. Andrii Goriunov,
    Multi-interval Sturm-Liouville problems with distributional coefficients,
    Methods Funct. Anal. Topology 26 (2020), no. 2, 103-110. doi:10.31392/MFAT-npu26_2.2020.02
  28. Iryna Chepurukhina, Aleksandr Murach,
    Elliptic problems with unknowns on the boundary and irregular boundary data,
    Methods Funct. Anal. Topology 26 (2020), no. 2, 91-102. P. A. Cojuhari, L. P. Nizhnik,
  29. Scattering problem for Dirac system with nonlocal potentials,
    Methods Funct. Anal. Topology 25 (2019), no. 3, 211-218.
  30. Carsten Trunk, Anar Assanova, and Roza Uteshova,
    ↗ On the solvability of boundary value problems for linear differential-algebraic equations with constant coefficients
    (submitted to ArXiv)
  31. Nazarbay Bliev & Nurlan Yerkinbayev
    Riemann problem for multiply connected domain in Besov spaces
    Springer, Boundary Value Problems volume 2024, Article number: 70 (2024)


   Conference Papers

  1. L. Nizhnik
    Self-adjoint operators with nonlocal potential
    COIA 20, Baku, August 26-28,2020, Proceedings of 7th International Conference on Control and Optimization with Industrial Applications, V1, p,20-22,
      
    ↗ http://coia-conf.org/en/view/pages/22
  2. Aliev, F. A.,  Aliev, N. A.,  Safarova, N. A.
     New representation of the Mittag-Leffler function through the exponential functions with rational derivatives
    Proceedings of the 7th International Conference on Control and Optimization with Industrial Applications, VOL. 1,  Pages: ‏ 80-82, 2020.
    DOI: https://doi.org/10.48550/arXiv.1904.12737
  3. Aliev, F. A.,  Hajiyeva, N. S.,  Namazov, A. A., Safarova, N. A.
    🗎 Asymptotical method to solution the identification problem for determining the parameters of discrete dynamical systems
    Proceedings of the7th International Conference on Control and Optimization with Industrial Applications, VOL. 1,  Pages: ‏ 92-94, 2020.
  4. Aliev, N. A.,  Safarova, N. A.,  Aliev, F. A.,  Velieva, N. I.
    🗎 Cauchy problem of the fractional order linear ordinary differential equations
    Proceedings of the7th International Conference on Control and Optimization with Industrial Applications, VOL. 1  Pages: ‏ 101-103., 2020.

Conference Proceedings


Abstracts/Proceedings

  1. A.S. Serdyuk, I. V. Sokolenko,
    Estimations of the widths of classes of the generalized Poisson integrals of periodic functions
    Current problems of Mechanics and Mathematics – 2023: Collection of Scientific Papers
    Edited by Roman M. Kushnir (Academician of NAS of Ukraine) and Volodymyr O. Pelykh (Corresponding Member of NAS of Ukraine) [Published Online], Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine. – 2023. – 452 p. P. 307-308. http://iapmm.lviv.ua/mpmm2023/materials/proceedings.mpmm2023.pdf
  2. A.S. Serdyuk, I. V. Sokolenko, On asymptotic estimates for the widths of classes of functions of high smoothness
    INTERNATIONAL ONLINE WORKSHOP ON APPROXIMATION THEORY, March 19-21, 2021, Ivano-Frankivsk, Ukraine, BOOK OF ABSTRACTS, P. 34.
  3. A.S. Serdyuk, I. V. Sokolenko, On asymptotic equations for the widths of classes of the generalized Poisson integrals
    Mathematical Analysis, Differential Equations & Applications (MADEA-9) International Conference Abstracts – Bishkek: KTMU. 2021 – 80 p., P. 73.
  4. A.S. Serdyuk, I. V. Sokolenko, Asymptotic estimates for the best uniform approximations of classes of convolution of periodic functions of high smoothness 
     The international scientific conference “Theory of approximations and its application” is dedicated to the 100th anniversary of the birth of Mykola Pavlovich Korneychuk (September 16-19, 2020, Dnipro, Ukraine). – Abstracts of reports. Dnipro, 2020. – P.25. https://at2020.dnu.dp.ua/at2020.pdf
  5. A.S. Serdyuk, I.V. Sokolenko, ESTIMATES FOR BEST UNIFORM APPROXIMATIONS OF CLASSES OF CONVOLUTIONS OF PERIODIC FUNCTIONS OF HIGH SMOTHNESS // 11th International Skorobohatko Mathematical Conference (October 26 – 30, 2020, Lviv, Ukraine). – Abstracts. – P 103.  http://www.iapmm.lviv.ua/conf_skorob2020/documents/2020tezy.pdf
  6. A.S. Serdyuk, I. V. Sokolenko, Asymptotic behavior of the widths of classes of the generalized Poisson integrals
    International scientific online conference «Algebraic and geometric methods of analysis» May 29 – June 1, 2023, dedicated to 160th anniversary of Dmytro Oleksandrovych Grave (25.08.1863 – 19.12.1939), academician of the Ukrainian Academy of Sciences, the first director of the Institute of Mathematics of NAS of Ukraine. – 2023. – 147 p. P. 109-111. https://imath.kiev.ua/~topology/conf/agma2023/contents/agma2023-theses.pdf
  7.  

We have to follow the following rules:

  1. Open Access: Please find a file attached 🗎 OpenAccessEU with a very long explanation. EITHER you publish under gold open access and pay for it. OR you do green open access, which means, sloppy speaking, you send the paper to ArXiv (or something comparable) and to some peer review journal. And this journal will have to make it open access after 6 month/12  month.
  2. On each publication you have to cite the EU emblem ( 🗎 see page 1 of the attached pdf or the 🗎 attached paper sample).
    The flagg can be downloaded under ↗ https://europa.eu/european-union/about-eu/symbols/flag_en
    Text: The authors have received funding from the European Union’s Horizon 2020 research 
    and innovation programme under the Marie Sklodowska-Curie grant agreement No 873071OR replace “The authors have…” by “The project has….”